首页> 外文期刊>Journal of Heat Transfer >Suppressed Dry-out in Two-Phase Microchannels via Surface Structures
【24h】

Suppressed Dry-out in Two-Phase Microchannels via Surface Structures

机译:通过表面结构抑制两相微通道中的干透

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrated suppressed dry-out on structured surfaces during flow boiling in microchannels. We designed and fabricated microchannels with (Figure 1) well-defined silicon micropillar arrays (heights of ~25 μm, diameters of 10 μm and pitches of 40 μm) coated with silicon dioxide on the bottom heated channel wall. We visualized the flow fields inside a smooth and structured surface microchannel during the annular flow boiling regime (heat flux q" = 430 W/cm~2 at a microchannel mass flux G = 300 kg/m~2s) with a high speed camera at a frame rate of 2000 fps. Time-lapse images (Figure 2) revealed two distinct dry-out dynamics for the two types of surfaces. For the smooth surface, the thin liquid film broke-up into smaller liquid drops/islands and the surface stayed in a dry state after the drops evaporated. The micro structured surface, on the other hand, preserved the thin liquid film initially due to capillary wicking. Dry patches eventually formed at the center of the microchannel which indicated wicking in the transverse direction (from the sidewalls inward) in addition to wicking in the flow direction. Overall, the structured surface showed less instances of dry-out both spatially and temporally. These visualizations aid in the understanding of the stability of the thin liquid film in the annular flow boiling regime and provide insight into heat transfer enhancement mechanisms by leveraging surface structure design in microchannels.
机译:我们证明了微通道内流动沸腾过程中结构化表面的干缩得到抑制。我们设计并制造了带有(图1)轮廓清晰的硅微柱阵列(高度约25μm,直径10μm,间距40μm)的微通道,并在底部加热的通道壁上覆盖了二氧化硅。我们用高速摄像头在环形流沸腾状态下观察了光滑且结构化的表面微通道内部的流场(在微通道质量通量G = 300 kg / m〜2s时热通量q“ = 430 W / cm〜2)帧速率为2000 fps。延时图像(图2)显示了两种类型表面的两种不同的变干动力学:对于光滑表面,薄液膜破裂成较小的液滴/岛和表面液滴蒸发后保持干燥状态;另一方面,由于毛细管毛细作用,微结构表面最初保留了液体薄膜。干燥斑块最终形成在微通道的中心,表明横向毛细作用(从整体而言,结构化表面在空间和时间上均表现出较少的变干现象,这些可视化有助于理解薄膜在环中的稳定性。 lar流沸腾状态,并通过利用微通道中的表面结构设计提供对传热增强机制的深入了解。

著录项

  • 来源
    《Journal of Heat Transfer》 |2016年第8期|080905.1-080905.1|共1页
  • 作者单位

    Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

    Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

    Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology , P.O. Box 54224, Abu Dhabi, UAE;

    Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号