首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >An Improved Rate of Heat Release Model for Modern High-Speed Diesel Engines
【24h】

An Improved Rate of Heat Release Model for Modern High-Speed Diesel Engines

机译:一种改进的现代高速柴油机放热率模型

获取原文
获取原文并翻译 | 示例
       

摘要

To meet the increasingly stringent emissions standards, diesel engines need to include more active technologies with their associated control systems. Hardware-in-the-loop (HiL) approaches are becoming popular where the engine system is represented as a real-time capable model to allow development of the controller hardware and software without the need for the real engine system. This paper focusses on the engine model required in such approaches. A number of semi-physical, zero-dimensional combustion modeling techniques are enhanced and combined into a complete model, these include - ignition delay, premixed and diffusion combustion and wall impingement. In addition, a fuel injection model was used to provide fuel injection rate from solenoid energizing signals. The model was parameterized using a small set of experimental data from an engine dynamometer test facility and validated against a complete data set covering the full engine speed and torque range. The model was shown to characterize the rate of heat release (RoHR) well over the engine speed and load range. Critically, the wall impingement model improved R~2 value for maximum RoHR from 0.89 to 0.96. This was reflected in the model's ability to match both pilot and main combustion phasing, and peak heat release rates derived from measured data. The model predicted indicated mean effective pressure and maximum pressure with R~2 values of 0.99 across the engine map. The worst prediction was for the angle of maximum pressure which had an R~2 of 0.74. The results demonstrate the predictive ability of the model, with only a small set of empirical data for training - this is a key advantage over conventional methods. The fuel injection model yielded good results for predicted injection quantity (R~2 = 0.99) and enabled the use of the RoHR model without the need for measured rate of injection.
机译:为了满足日益严格的排放标准,柴油发动机需要在其相关的控制系统中包括更多主动技术。硬件在环(HiL)方法变得越来越普遍,其中引擎系统被表示为实时功能模型,从而无需实际引擎系统即可开发控制器硬件和软件。本文着重于此类方法所需的发动机模型。增强了许多半物理,零维燃烧建模技术,并将其组合为一个完整的模型,其中包括-点火延迟,预混和扩散燃烧以及壁撞击。另外,燃油喷射模型用于根据螺线管通电信号提供燃油喷射率。使用来自发动机测功机测试设施的少量实验数据对模型进行参数化,并针对涵盖整个发动机转速和扭矩范围的完整数据集进行验证。该模型显示出很好的表征了发动机转速和负载范围内的放热率(RoHR)。至关重要的是,壁碰撞模型将最大RoHR的R〜2值从0.89提高到0.96。这反映在模型匹配先导燃烧阶段和主燃烧阶段的能力以及根据测量数据得出的峰值放热率上。模型预测的平均有效压力和最大压力在整个发动机图中的R〜2值为0.99。最坏的预测是针对最大压力角,R〜2为0.74。结果证明了该模型的预测能力,仅需少量的经验数据即可进行训练-与传统方法相比,这是一个关键优势。燃油喷射模型对于预测的喷射量(R〜2 = 0.99)产生了良好的结果,并且无需测量喷射速率即可使用RoHR模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号