...
首页> 外文期刊>Journal of Electronic Packaging >Numerical Investigation of Shape Effect on Microdroplet Evaporation
【24h】

Numerical Investigation of Shape Effect on Microdroplet Evaporation

机译:形状对微滴蒸发影响的数值研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As electronic devices continue to shrink in size and increase in functionality, effective thermal management has become a critical bottleneck that hinders continued advancement. Two-phase cooling technologies are of growing interest for electronics cooling due to their high heat removal capacity and small thermal resistance (<0.1 k cm(2)/W). One typical example of a two-phase cooling method is droplet evaporation, which can provide a high heat transfer coefficient with low superheat. While droplet evaporation has been studied extensively and used in many practical cooling applications (e.g.,, spray cooling), the relevant work has been confined to spherical droplets with axisymmetric geometries. A rationally designed evaporation platform that yields asymmetric meniscus droplets can potentially achieve larger meniscus curvatures, which gives rise to higher vapor concentration gradients along the contact line region, and therefore, yields higher evaporation rates. In this study, we develop a numerical model to investigate the evaporation behavior of asymmetrical microdroplets suspended on a porous micropillar structure. The equilibrium profiles and mass transport characteristics of droplets with circular, triangular, and square contact shapes are explored using the volume of fluid (VOF) method. The evaporative mass transport at the liquid-vapor interface is modeled using a simplified Schrage model. The results show highly nonuniform mass transport characteristics for asymmetrical microdroplets, where a higher local evaporation rate is observed near the locations where the meniscus has high curvature. This phenomenon is attributed to a higher local vapor concentration gradient that drives faster vapor diffusion at more curved regions, similar to a lightning rod exhibiting a strong electric field along a highly curved surface. By using contact line confinement to artificially tune the droplet into a more curved geometry, we find that the total evaporation rate from a triangular-based droplet is enhanced by 13% compared to a spherical droplet with the same perimeter and liquid-vapor interfacial area. Such a finding can guide the design and optimization of geometric features to improve evaporation in advanced microcooling devices.
机译:随着电子设备尺寸的不断缩小和功能的增加,有效的热管理已成为阻碍持续发展的关键瓶颈。由于两相冷却技术具有较高的散热能力和较小的热阻(<0.1 k cm(2)/ W),因此在电子产品冷却方面越来越引起人们的关注。两相冷却方法的一个典型示例是液滴蒸发,它可以提供较高的传热系数和较低的过热度。尽管已经对液滴蒸发进行了广泛的研究并用于许多实际的冷却应用中(例如喷雾冷却),但是相关的工作仅限于具有轴对称几何形状的球形液滴。合理设计的产生不对称弯月形液滴的蒸发平台可以潜在地实现更大的弯月形曲率,这会导致沿接触线区域产生更高的蒸汽浓度梯度,因此产生更高的蒸发速率。在这项研究中,我们建立了一个数值模型来研究悬浮在多孔微柱结构上的不对称微滴的蒸发行为。使用流体体积(VOF)方法探索了具有圆形,三角形和正方形接触形状的液滴的平衡轮廓和质量传输特性。使用简化的Schrage模型对液-气界面处的蒸发质量传递进行建模。结果显示了非对称微滴的高度不均匀的传质特性,其中在弯月面具有高曲率的位置附近观察到更高的局部蒸发速率。此现象归因于较高的局部蒸气浓度梯度,该局部蒸气浓度梯度在较弯曲的区域驱动较快的蒸气扩散,类似于避雷针沿高度弯曲的表面表现出强电场。通过使用接触线约束将液滴人工调整为更弯曲的几何形状,我们发现,与具有相同周长和液体-蒸汽界面面积的球形液滴相比,基于三角形的液滴的总蒸发速率提高了13%。这样的发现可以指导几何特征的设计和优化,以改善高级微冷却装置中的蒸发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号