...
首页> 外文期刊>Journal of Cleaner Production >Combined exergy analysis, energy integration and optimization of syngas and ammonia production plants: A cogeneration and syngas purification perspective
【24h】

Combined exergy analysis, energy integration and optimization of syngas and ammonia production plants: A cogeneration and syngas purification perspective

机译:联合分析,能源整合和合成气和氨生产装置的优化:热电联产和合成气净化的前景

获取原文
获取原文并翻译 | 示例
           

摘要

Modern ammonia production plants are equipped with efficient energy integration networks able to recover an important fraction of the waste heat exergy available throughout the chemical system. However, in order to drive the endothermic reforming reactions at high temperature, as well as the syngas purification and compression processes, additional energy must be supplied by costly nonrenewable resources. Moreover, the choice of the carbon capture unit, based on either physical or chemical absorption systems, drastically affects the way in which the waste heat recovery must be performed, and whether one or more energy technologies should or not be integrated (e.g. heat pump). Meanwhile, the selection among various energy resources, e.g. the import of electricity over the autonomous combined heat and power production (CHP), strongly depends on the ratio between the prices of electricity and fuels consumed, as well as on the extent of the energy integration. Accordingly, a simple trial and error approach falls short in efficiently determining the most suitable operating conditions that enable the production plant to run under the minimum operating cost. Thus, by using a systematic methodology, the most suitable utility systems (cooling, refrigeration, and cogeneration) that satisfy the minimum energy requirement (MER) with the lowest energy consumption and operating cost, are selected. Consequently, the conventional plant efficiency is increased about 10% by using a mixed operating mode or autonomous operating mode with combined cycle. Furthermore, reduced cooling (23%) and heating (51%) requirements are expected when physical solvents are used. The lowest exergy consumption corresponds to mixed operating mode by using a physical absorption unit (27.76 GJ/t(NH3)). Finally, it is found that exergy efficiency drops 24% when the irreversibility in the upstream steps of feedstock obtainment are considered. (C) 2019 Elsevier Ltd. All rights reserved.
机译:现代氨气生产厂配备了高效的能量集成网络,能够回收整个化学系统中可用的重要余热。然而,为了在高温下驱动吸热重整反应以及合成气的纯化和压缩过程,必须通过昂贵的不可再生资源来提供额外的能量。此外,基于物理或化学吸收系统的碳捕集装置的选择会极大地影响必须执行废热回收的方式,以及是否应集成一种或多种能源技术(例如热泵) 。同时,在各种能源中进行选择,例如自主热电联产(CHP)上的电力进口在很大程度上取决于电价与消耗的燃料之间的比率,以及能源整合的程度。因此,简单的试错法不能有效地确定使生产工厂能够以最小的运行成本运行的最合适的运行条件。因此,通过使用系统的方法,选择了最合适的公用事业系统(冷却,制冷和热电联产),该系统可满足最低能耗要求(MER),最低能耗和运营成本。因此,通过使用混合操作模式或具有联合循环的自主操作模式,常规工厂效率提高了约10%。此外,当使用物理溶剂时,预期降低的冷却(23%)和加热(51%)要求。通过使用物理吸收单元(27.76 GJ / t(NH3)),最低的火用能量消耗相当于混合运行模式。最后,发现当考虑到原料获得的上游步骤中的不可逆性时,火用效率降低了24%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号