首页> 外文期刊>Journal of the American Ceramic Society >Microscopic Removal Function and the Relationship Between Slurry Particle Size Distribution and Workpiece Roughness During Pad Polishing
【24h】

Microscopic Removal Function and the Relationship Between Slurry Particle Size Distribution and Workpiece Roughness During Pad Polishing

机译:抛光抛光过程中的微观去除功能以及浆液粒度分布与工件粗糙度之间的关系

获取原文
获取原文并翻译 | 示例
           

摘要

Various ceria and colloidal silica polishing slurries were used to polish fused silica glass workpieces on a polyurethane pad. Characterization of the slurries' particle size distribution (PSD) (using both ensemble light scattering and single particle counting techniques) and of the polished workpiece surface (using atomic force microscopy) was performed. The results show the final workpiece surface roughness is quantitatively correlated with the logarithmic slope of the distribution function for the largest particles at the exponential tail end of the PSD. Using the measured PSD, fraction of pad area making contact, and mechanical properties of the workpiece, slurry, and pad as input parameters, an Ensemble Hertzian Gap (EHG) polishing model was formulated to estimate each particle's penetration, load, and contact zone. The model is based on multiple Hertzian contact of slurry particles at the work-piece-pad interface in which the effective interface gap is determined through an elastic load balance. Separately, ceria particle static contact and single pass sliding experiments were performed showing ~l-nm depth removal per pass (i.e., a plastic type removal). Also, nanoindentation measurements on fused silica were made to estimate the critical load at which plastic type removal starts to occur (P_(crit)~5 × 10~(-5) N). Next the EHG model was extended to create simulated polished surfaces using the Monte Carlo method where each particle (with the calculated characteristics described above) slides and removes material from the silica surface in random directions. The polishing simulation utilized a constant depth removal mechanism (i.e., not scaling with particle size) of the elastic deformation zone cross section between the particle and silica surface, which was either 0.04 nm (for chemical removal) at low loads (<P_(crit)) or 1.0 nm (for plastic removal) at intermediate loads (>P_(crit). The simulated surfaces quantitatively compare well with the measured rms roughness, power spectra, surface texture, absolute thickness material removal rate, and load dependence of removal rate.
机译:各种二氧化铈和胶态二氧化硅抛光浆料用于在聚氨酯垫上抛光熔融石英玻璃工件。对浆料的粒度分布(PSD)(使用整体光散射和单颗粒计数技术)以及抛光的工件表面(使用原子力显微镜)进行了表征。结果表明,最终工件表面粗糙度与PSD指数尾部最大颗粒的分布函数的对数斜率定量相关。使用测得的PSD,接触的垫面积分数以及工件,浆料和垫的机械性能作为输入参数,制定了Ensemble Hertzian Gap(EHG)抛光模型来估算每个粒子的渗透,载荷和接触区。该模型基于浆液颗粒在工件-垫板界面的多次赫兹接触,其中有效界面间隙是通过弹性负载平衡确定的。分别进行二氧化铈颗粒静态接触和单程滑动实验,显示每遍约1nm深度去除(即,塑性类型去除)。另外,对熔融石英进行了纳米压痕测量,以估算开始发生塑性去除的临界载荷(P_(crit)〜5×10〜(-5)N)。接下来,使用蒙特卡洛方法扩展EHG模型以创建模拟抛光表面,其中每个粒子(具有上述计算的特性)滑动并沿随机方向从二氧化硅表面去除材料。抛光模拟利用恒定的深度去除机制(即,不随粒度缩放),在颗粒和二氧化硅表面之间的弹性变形区横截面在低负荷(<P_(临界)时为0.04 nm(用于化学去除) ))或1.0 nm(用于塑料去除)(在中等载荷下(> P_(临界))。模拟表面与测量的rms粗糙度,功率谱,表面纹理,绝对厚度的材料去除率以及去除率的负载依赖性很好地进行了定量比较。

著录项

  • 来源
    《Journal of the American Ceramic Society》 |2014年第1期|81-91|共11页
  • 作者单位

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

    Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号