【24h】

Flow boiling CHF in microgravity

机译:微重力流式沸腾CHF

获取原文
获取原文并翻译 | 示例
           

摘要

Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and life support systems intended for space exploration. This study examines flow boiling CHF in microgravity that was achieved in parabolic flight experiments with FC-72 onboard NASA's KC-135 turbojet. At high heat fluxes, bubbles quickly coalesced into fairly large vapor patches along the heated wall. As CHF was approached, these patches grew in length and formed a wavy vapor layer that propagated along the wall, permitting liquid access only in the wave troughs. CHF was triggered by separation of the liquid-vapor interface from the wall due to intense vapor effusion in the troughs. This behavior is consistent with, and accurately predicted by the Interfacial Lift-off CHF Model. It is shown that at low velocities CHF in microgravity is significantly smaller than in horizontal flow on earth. CHF differences between the two environments decreased with increasing velocity, culminating in virtual convergence at about 1.5 m/s. This proves it is possible to design inertia-dominated systems by maintaining flow velocities above the convergence limit. Such systems allow data, correlations, and/or models developed on earth to be safely implemented in space systems.
机译:对微重力流沸腾的了解不足,最近已成为发展用于太空探索的多种类型的发电和生命支持系统的主要障碍。这项研究检查了微重力下的沸腾CHF,这是通过NASA的KC-135涡轮喷气发动机上的FC-72在抛物线飞行实验中实现的。在高热通量下,气泡沿加热壁迅速聚结成相当大的蒸气斑块。当接近CHF时,这些斑块的长度会增加,并形成一个波浪形的蒸汽层,其沿着壁传播,仅允许液体进入波谷。 CHF是由于槽中强烈的蒸汽喷出而使液体-蒸汽界面与壁分离而触发的。该行为与界面剥离CHF模型一致,并可以通过其准确预测。结果表明,在低速度下,CHF的微重力显着小于地球上水平流动的CHF。两种环境之间的CHF差异随速度增加而减小,最终达到约1.5 m / s的虚拟收敛速度。这证明可以通过将流速保持在收敛极限以上来设计惯性控制系统。这样的系统允许在地球系统上开发的数据,相关性和/或模型可以在空间系统中安全地实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号