...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Transient gas-liquid-solid flow model with heat and mass transfer for hydrate reservoir drilling
【24h】

Transient gas-liquid-solid flow model with heat and mass transfer for hydrate reservoir drilling

机译:水合物储层钻井的传热传质瞬态气液固两相流模型

获取原文
获取原文并翻译 | 示例
           

摘要

The three-phase gas-liquid-solid flow, caused by hydrate decomposition in cuttings is a main concern during drilling through gas-hydrate reservoir. In this study, a transient gas-liquid-solid flow model is developed considering the coupling interactions between hydrate dynamic decomposition, cuttings transport and heat transfer in multiphase flow. Using this model, the transient gas-liquid-solid flow behaviors are investigated. Numerical simulations show that the decomposition rate of hydrate in formation is only 1/140 of that in annular cuttings for a unit depth, therefore, the influences of hydrate decomposition in hydrate layers can be neglected. Hydrate particles undergo three processes from bottom hole to wellhead in annulus: non-decomposition, slow decomposition and rapid decomposition. In annulus where the depth is more than 400 m, hydrates decompose slowly and the decomposed gas hardly expands due to the high pressure. While, if the hydrates and decomposed gas return upwards to the position where the depth less than 400 m, the gas void fraction increases significantly, not only due to the faster decomposition rate of hydrates but also due to the more intense expansion of decomposed gas. After the hydrate particles return upwards to the wellhead, the behaviors of gas-liquid-solid flow tend to be a quasi-stable state. If there is no backpressure device at the wellhead, that is, the wellhead backpressure is 0 MPa, the gas void fraction at the wellhead can reach 0.68, which is enough to cause blowout accident. Increasing wellhead backpressure to 2 MPa through managed pressure devices and lowering the inlet temperature of drilling fluid to 17.5 degrees C except adjusting drilling fluid density can manage the gas void fraction within 10%. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由钻屑中的水合物分解引起的三相气-液-固流动是通过气水合物储层进行钻探时的主要问题。在这项研究中,考虑了水合物动态分解,岩屑运移和多相流传热之间的耦合相互作用,建立了一个瞬态气-液-固流动模型。使用该模型,研究了瞬态气-液-固流动特性。数值模拟表明,单位深度的水合物分解速率仅为环状钻屑的1/140,因此可以忽略水合物层中水合物分解的影响。水合物颗粒从井底到环形井口经历三个过程:不分解,缓慢分解和快速分解。在深度大于400 m的环空中,水合物会缓慢分解,并且由于高压,分解后的气体几乎不会膨胀。同时,如果水合物和分解的气体向上返回到深度小于400 m的位置,则气体空隙率会显着增加,这不仅是由于水合物的分解速度更快,而且还因为分解的气体会更强烈地膨胀。水合物颗粒向上返回井口后,气液固流行为趋于准稳态。如果井口没有背压装置,即井口背压为0 MPa,则井口处的瓦斯率可以达到0.68,足以引起井喷事故。通过调节压力装置将井口背压提高至2 MPa,并将钻井液的入口温度降低至17.5摄氏度,除非调节钻井液密度可以将气隙率控制在10%以内。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号