首页> 外文期刊>Environmental Science & Technology >Enhanced Uranium Immobilization by Phosphate Amendment under Variable Geochemical and Flow Conditions: Insights from Reactive Transport Modeling
【24h】

Enhanced Uranium Immobilization by Phosphate Amendment under Variable Geochemical and Flow Conditions: Insights from Reactive Transport Modeling

机译:在可变的地球化学和流量条件下通过磷酸盐修正提高铀的固定化:反应性运输模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphate amendment has shown promise for enhancing uranium immobilization. The mechanism of the enhancement, however, has remained unclear with contrasting observations under variable environmental conditions. A dual-domain reactive transport model is developed here with constraints from batch and column experimental data to understand the mechanisms and to explore the effectiveness of enhanced U(VI) immobilization under variable geochemical and flow conditions. Modeling results indicate that under low U(VI) conditions in natural waters, phosphate addition promotes U(VI) immobilization through the formation of U(VI)–phosphate ternary surface complexes and the precipitation of calcium phosphate, both decreasing the concentrations of mobile U–Ca–CO_(3) aqueous complexes. This contrasts with previous hypotheses attributing the immobilization enhancement to U(VI)–phosphate precipitation under experimental conditions with high U(VI). Sensitivity analysis shows that phosphate is effective under relatively low Ca (<0.1 mM) and total inorganic carbon (TIC) ( 60% of U(VI) still remains on sediments after 113 residence times of flushing with low phosphate solutions (<0.1 mM). Under high Ca or TIC conditions, a similar level of U(VI) immobilization can be achieved only when the phosphate concentration is higher than Ca or TIC concentrations. Compared to the strong geochemical effects, flow conditions have relatively limited impacts on U(VI) immobilization. These results explain contrasting field observations on the effectiveness of phosphate amendment and offer capabilities to extrapolate observations to other environmental conditions.
机译:磷酸盐修正案显示了加强铀固定化的希望。然而,与在变化的环境条件下的观察结果相反,增强的机制仍不清楚。在这里开发了一个双域反应性运输模型,其中使用了来自批次和柱子实验数据的约束条件来理解机理,并探索了在可变地球化学和流动条件下增强的U(VI)固定化的有效性。建模结果表明,在天然水的低U(VI)条件下,磷酸盐的添加通过形成U(VI)-磷酸盐三元表面复合物和磷酸钙的沉淀来促进U(VI)的固定化,都降低了流动U的浓度–Ca–CO_(3)水性络合物。这与先前的假设相反,在较高的U(VI)实验条件下,固定化增强归因于U(VI)-磷酸盐沉淀。敏感性分析表明,磷酸盐在相对较低的Ca(<0.1 mM)下有效,并且总无机碳(TIC)(U(VI)的60%仍在低磷酸盐溶液(<0.1 mM)冲洗113停留时间后仍保留在沉积物中。 。在高Ca或TIC的条件下,只有当磷酸盐的浓度高于Ca或TIC的浓度时,才能实现类似水平的U(VI)固定,与强地球化学作用相比,流动条件对U(VI)的影响相对有限。这些结果解释了在现场观察到的关于磷酸盐改良剂有效性的对比,并提供了将观察结果推论到其他环境条件的能力。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第10期|5841-5850|共10页
  • 作者单位

    Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States;

    Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States;

    Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号