首页> 外文期刊>Environmental Science & Technology >Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Reaction Kinetics, Mechanisms, and the Role of Chloride
【24h】

Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Reaction Kinetics, Mechanisms, and the Role of Chloride

机译:聚酰胺膜单体与游离氯的反应活性:反应动力学,机理和氯化物的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Aromatic polyamide thin-film composite membranes are widely used in reverse osmosis (RO) and nanofiltration (NF) due to their high water permeability and selectivity. However, these membranes undergo biofouling and can degrade and eventually fail during free chlorine exposure. To better understand this effect, the reactivity of the polyamide monomer (benzanilide (BA)) with free chlorine was tested under varying pH and chloride (Cl-) conditions. The kinetic results indicated that the current existing mechanisms, especially the Orton rearrangement, were invalid. Revised reaction pathways were proposed where BA chlorination was driven by two independent pathways involving the anilide ring and amide nitrogen moieties. The ability for one moiety to be chosen over the other was highly dependent on the pH, Cl- concentration, and the resulting chlorinating agents (e.g., Cl-2, HOCl, OCl-, and Cl2O) generated. Species-specific rate constants for BA with Cl-2, OCl-, and HOCl equaled (7.6 +/- 0.19) x 10(1), (1.7 +/- 1.5) X 10(1), (2.1 +/- 0.71) x 10(-2) M-1 s(-1), respectively. A similar value for Cl2O could not be accurately estimated under the tested conditions. The behavior of these chlorinating agents differed for each reactive site such that OCl- HOCl for N-chlorination and Cl-2 HOCl OCl- for anilide ring chlorination. Experiments with modified monomers indicated that substituent placement largely affected which reactive site was kinetically favorable. Overall, such findings provide a predictive model of how the polyamide monomer degrades during chlorine exposure and guidance on how chlorine-resistant polyamide membranes should be designed.
机译:芳香族聚酰胺薄膜复合膜因其高的透水性和选择性而广泛用于反渗透(RO)和纳滤(NF)。但是,这些膜会受到生物污染,并且会降解并最终在暴露于自由氯气期间失效。为了更好地理解这种效果,在各种pH和氯化物(Cl-)条件下测试了聚酰胺单体(苯甲腈(BA))与游离氯的反应性。动力学结果表明,当前存在的机制,特别是Orton重排,是无效的。提出了修订的反应途径,其中BA氯化由涉及苯胺环和酰胺氮部分的两个独立途径驱动。选择一个部分而不是另一个部分的能力高度依赖于pH,Cl-浓度以及所产生的氯化剂(例如Cl-2,HOCl,OCl-和Cl2O)。具有Cl-2,OCl和HOCl的BA的物种特异性速率常数等于(7.6 +/- 0.19)x 10(1),(1.7 +/- 1.5)X 10(1),(2.1 +/- 0.71) )x 10(-2)M-1 s(-1)。在测试条件下,无法准确估算出类似的Cl2O值。这些氯化剂的行为随每个反应位点的不同而不同,例如NCl的OCl-> HOCl和苯胺环氯化的Cl-2> HOCl> OCl-。用改性单体进行的实验表明,取代基的位置在很大程度上影响了哪个反应部位在动力学上是有利的。总体而言,这些发现为聚酰胺单体在氯接触过程中如何降解提供了预测模型,并为应如何设计耐氯聚酰胺膜提供了指导。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第14期|8167-8176|共10页
  • 作者单位

    Purdue Univ, Lyles Sch Civil Engn, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA;

    Towson Univ, Dept Chem, 8000 York Rd, Towson, MD 21252 USA;

    Purdue Univ, Sch Mat Engn, 701 West Stadium Ave, W Lafayette, IN 47907 USA;

    Purdue Univ, Div Environm & Ecol Engn, 500 Cent Dr, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Mat Engn, 701 West Stadium Ave, W Lafayette, IN 47907 USA|Purdue Univ, Div Environm & Ecol Engn, 500 Cent Dr, W Lafayette, IN 47907 USA;

    Purdue Univ, Lyles Sch Civil Engn, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA|Purdue Univ, Div Environm & Ecol Engn, 500 Cent Dr, W Lafayette, IN 47907 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号