首页> 外文期刊>Engineering Structures >Three-dimensional finite element modelling of rocking bridge piers under cyclic loading and exploration of options for increased energy dissipation
【24h】

Three-dimensional finite element modelling of rocking bridge piers under cyclic loading and exploration of options for increased energy dissipation

机译:循环荷载作用下摇摆桥墩的三维有限元建模及能量消散的探索

获取原文
获取原文并翻译 | 示例
           

摘要

The development of rocking in bridge structures has been identified as a valid isolation technique for structures under seismic loading. By utilising uplift in the bridge system, ductility and strength demands can be reduced on the structural element, limiting damage, and reducing residual displacements of the structure due to the system's self-centring capability. A disadvantage has been identified, however, in the largely reduced hysteretic energy dissipation capacity of the rocking system. The objective of the present study is the development and validation of two three-dimensional finite element models undergoing cyclic quasi-static loading, using the software package ANSYS - a conventional reinforced concrete monolithic bridge pier and a precast post-tensioned concrete bridge pier wrapped in fibre-reinforced polymer (FRP), which allows uplift. The validation of these models according to existing experimental data focuses on the damage of the bridge pier under sustained loading and the corresponding concrete constitutive models utilised. Once validated, further models may be simulated which better identify the advantages of both the use of FRP and allowing the development of a rocking motion under cyclic loading. Furthermore, a study of different methods of increasing the energy dissipation of the system is presented, focusing on the use of both mild steel and superelastic shape memory alloy (SMA) dissipaters placed either internally or externally in various configurations. The study identifies many potential solutions for increasing the hysteretic energy dissipation of the rocking system whilst maintaining a small residual drift. (C) 2016 Elsevier Ltd. All rights reserved.
机译:桥梁结构中摇摆的发展已被确定为地震荷载下结构的有效隔离技术。通过在桥梁系统中利用提升力,可以降低结构元件的延展性和强度要求,从而限制损坏,并减少由于系统的自动定心能力而导致的结构残余位移。然而,已经发现缺点是摇摆系统的滞后能量消散能力大大降低。本研究的目的是使用软件包ANSYS开发和验证两个周期性的准静态载荷的三维有限元模型-常规的钢筋混凝土整体式桥墩和预制的后张预应力混凝土桥墩包裹在其中纤维增强聚合物(FRP),可以提拉。根据现有的实验数据对这些模型的验证集中在持续荷载作用下桥墩的损伤以及所采用的相应混凝土本构模型上。一旦通过验证,可以模拟其他模型,这些模型可以更好地识别使用FRP的优势,并允许在循环载荷下产生摇摆运动。此外,对增加系统能量耗散的不同方法进行了研究,重点是使用内部或外部以各种配置放置的低碳钢和超弹性形状记忆合金(SMA)耗散器。该研究确定了许多潜在解决方案,这些解决方案可在保持较小的残余漂移的同时增加摇摆系统的滞回能量耗散。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号