首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity
【24h】

Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity

机译:WSN中的多目标节点部署:在覆盖范围,生存期,能耗和连接性之间寻求最佳平衡

获取原文
获取原文并翻译 | 示例
           

摘要

The increased demand of Wireless Sensor Networks (WSNs) in different areas of application have intensified studies dedicated to the deployment of sensor nodes in recent past. For deployment of sensor nodes some of the key objectives that need to be satisfied are coverage of the area to be monitored, net energy consumed by the WSN, lifetime of the network, and connectivity and number of deployed sensors. In this article the sensor node deployment task has been formulated as a constrained multi-objective optimization (MO) problem where the aim is to find a deployed sensor node arrangement to maximize the area of coverage, minimize the net energy consumption, maximize the network lifetime, and minimize the number of deployed sensor nodes while maintaining connectivity between each sensor node and the sink node for proper data transmission. We assume a tree structure between the deployed nodes and the sink node for data transmission. Our method employs a recently developed and very competitive multi-objective evolutionary algorithm (MOEA) known as MOEA/D-DE that uses a decomposition approach for converting the problem of approximation of the Pareto fronts (PF) into a number of single-objective optimization problems. This algorithm employs differential evolution (DE), one of the most powerful real parameter optimizers in current use, as its search method. The original MOEA/D has been modified by introducing a new fuzzy dominance based decomposition technique. The algorithm introduces a fuzzy Pareto dominance concept to compare two solutions and uses the scalar decomposition method only when one of the solutions fails to dominate the other in terms of a fuzzy dominance level. We have compared the performance of the resulting algorithm, called MOEA/DFD, with the original MOEA/D-DE and another very popular MOEA called Non-dominated Sorting Genetic Algorithm (NSGA-II). The best trade-off solutions from MOEA/DFD based node deployment scheme have also been compared with a few single-objective node deployment schemes based on the original DE, an adaptive DE-variant (JADE), original particle swarm optimization (PSO), and a state-of-the art variant of PSO (Comprehensive Learning PSO). In all the test instances, MOEA/DFD performs better than all other algorithms. Also the proposed multi-objective formulation of the problem adds more flexibility to the decision maker for choosing the necessary threshold of the objectives to be satisfied.
机译:近来,无线传感器网络(WSN)在不同应用领域中日益增长的需求已加强了致力于传感器节点部署的研究。对于传感器节点的部署,一些需要满足的关键目标是要监视的区域的覆盖范围,WSN消耗的净能量,网络的生存期以及已部署的传感器的连接性和数量。在本文中,传感器节点部署任务已被表述为约束多目标优化(MO)问题,目的是找到一个已部署的传感器节点布置,以最大程度地覆盖范围,最小化净能耗,最大化网络寿命,并最大程度地减少了部署的传感器节点的数量,同时保持每个传感器节点和宿节点之间的连接性,以进行正确的数据传输。我们假设已部署节点和接收器节点之间的树结构用于数据传输。我们的方法采用了最近开发的且竞争非常激烈的多目标进化算法(MOEA),称为MOEA / D-DE,该算法使用分解方法将Pareto前沿(PF)的近似问题转换为多个单目标优化问题。该算法采用差分演化(DE)作为搜索方法,该算法是当前使用的最强大的实参优化器之一。最初的MOEA / D已通过引入基于模糊优势的新分解技术进行了修改。该算法引入了模糊Pareto优势概念来比较两个解决方案,并且仅在其中一个解决方案无法根据模糊优势级别控制另一个解决方案时才使用标量分解方法。我们将得到的称为MOEA / DFD的算法与原始的MOEA / D-DE和另一种非常流行的称为非支配排序遗传算法(NSGA-II)的MOEA的性能进行了比较。还已将基于MOEA / DFD的节点部署方案的最佳权衡解决方案与基于原始DE,自适应DE变量(JADE),原始粒子群优化(PSO)的一些单目标节点部署方案进行了比较,和最新的PSO变体(全面学习PSO)。在所有测试实例中,MOEA / DFD的性能均优于所有其他算法。同样,提出的问题的多目标表述为决策者选择所需满足的目标阈值增加了更多的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号