...
首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multiple Random Empirical Kernel Learning with Margin Reinforcement for imbalance problems
【24h】

Multiple Random Empirical Kernel Learning with Margin Reinforcement for imbalance problems

机译:带有余量增强的多重随机经验核学习,解决不平衡问题

获取原文
获取原文并翻译 | 示例
           

摘要

Imbalance problems arise in real-world applications when the number of negative samples far exceeds the number of positive samples, such as medical data. When solving the classification of imbalance problems, the samples located near the decision hyperplane contribute more to the decision hyperplane, and the samples far from the decision hyperplane contribute less to the decision hyperplane. So we can consider giving higher weights to the samples near the decision hyperplane, but they are sensitive to noise, and too much emphasis on them may lead to unstable performance. This paper proposes a Margin Reinforcement (MR) method to overcome the above dilemma. Because the imbalance problem is a cost-sensitive problem, MR gives positive samples a uniform high weight to improve the misclassification cost of the positive sample. For negative samples, according to their entropy, samples away from the decision surface and noise samples mixed in the positive samples are given a smaller weight, in order to improve the efficiency and robustness of the algorithm. Therefore, MR can emphasize the importance of samples located in overlapping regions of positive and negative classes and ignore the effects of noise samples to produce superior performance. Multiple Random Empirical Kernel Learning (MREKL) has proven to be effective and efficient in dealing with balance problems. In order to improve the performance of MREKL on imbalanced datasets, MR is introduced into MREKL to propose a novel Multiple Random Empirical Kernel Learning with Margin Reinforcement (MREKL-MR). MREKL-MR efficiently map the samples into low-dimensional feature spaces, then utilizes the MR approach to reenforce the importance of margin samples and decrease the effects of noise samples. Experimental results on 28 imbalanced datasets indicate that MREKL-MR is superior to comparison algorithms. Finally, the effectiveness of MREKL-MR in dealing with imbalance problems is verified on the Heart Failure dataset.
机译:当阴性样品的数量远远超过阳性样品的数量(例如医学数据)时,在实际应用中会出现不平衡问题。在解决不平衡问题的分类时,位于决策超平面附近的样本对决策超平面的贡献更大,而远离决策超平面的样本对决策超平面的贡献则较小。因此,我们可以考虑对决策超平面附近的样本赋予更高的权重,但是它们对噪声敏感,并且过分强调它们可能会导致性能不稳定。本文提出了一种边缘加固(MR)方法来克服上述难题。由于不平衡问题是对成本敏感的问题,因此MR为阳性样品赋予了均匀的高权重,以改善阳性样品的错误分类成本。对于负样本,根据其熵,将远离决策面的样本和混合在正样本中的噪声样本赋予较小的权重,以提高算法的效率和鲁棒性。因此,MR可以强调位于正类别和负类别的重叠区域中的样本的重要性,而忽略噪声样本的影响以产生出色的性能。事实证明,多重随机经验核学习(MREKL)在解决平衡问题方面是有效的。为了提高MREKL在不平衡数据集上的性能,将MR引入MREKL以提出一种新颖的具有边际强化的多重随机经验核学习(MREKL-MR)。 MREKL-MR有效地将样本映射到低维特征空间,然后利用MR方法来增强余量样本的重要性并减少噪声样本的影响。在28个不平衡数据集上的实验结果表明,MREKL-MR优于比较算法。最后,在心力衰竭数据集上验证了MREKL-MR处理不平衡问题的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号