首页> 外文期刊>Energy >Exergy assessment of single and dual pressure industrial ammonia synthesis units
【24h】

Exergy assessment of single and dual pressure industrial ammonia synthesis units

机译:单,双压力工业氨合成装置的火用评估

获取原文
获取原文并翻译 | 示例
           

摘要

In exothermic, equilibrium-limited processes such as ammonia synthesis, higher per-pass conversions are often achieved by withdrawing the enthalpy of reaction before the conversion has been completed. However, although inter-bed cooling may help controlling the bed feed temperatures and generates high pressure steam, it also shifts the reacting mixture away from equilibrium (i.e. by increasing the reacting driving force, -Delta G), thus increasing the process irreversibilities. In order to offset the unfavorable effects of the bed intercooling in the decreasing-volume reactive system as well as to reduce the power consumption, a catalytic once-through conversion section is introduced in a 1000 metric t(NH3)/day ammonia synthesis unit. Three unit configurations are analyzed: two are based on single pressure loops (SP150, SP200), whereas the other one (DP) operates at two incremental levels of pressure (83/200 bar). The dual pressure process aims to show the relevance of the Counteraction Principle for driving the system irreversibilities down. The plant-wide and main components' performance are also compared in terms of exergy efficiency, economic revenues and utilities consumption. As a result, the syngas compressor, ammonia converter, waste heat recovery and ammonia refrigeration systems are found to be responsible for about 80-86% of total irreversibilities in the ammonia loop, which varies from 23.8 MW for DP and 27.2 MW for SP150. A cryogenic purge gas treatment unit allows improving the loop performance in 9-13% if compared to non-hydrogen-recovery systems. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在放热的,平衡受限的过程(例如氨合成)中,通常通过在转化完成之前撤回反应焓来实现更高的单程转化率。然而,尽管床间冷却可以帮助控制床进料温度并产生高压蒸汽,但是它也使反应混合物偏离平衡(即通过增加反应驱动力-ΔG),从而增加了过程不可逆性。为了抵消床内冷却在减少体积的反应系统中的不利影响以及降低功耗,在1000公吨t(NH3)/天的氨合成装置中引入了催化一次转化段。分析了三种单元配置:两种基于单个压力环路(SP150,SP200),而另一种(DP)基于两个增量压力水平(83/200 bar)运行。双重压力过程旨在表明抵消原理对降低系统不可逆性的重要性。还从火用效率,经济收入和公用事业消耗方面比较了整个工厂和主要组件的性能。结果,发现合成气压缩机,氨转化器,废热回收和氨制冷系统约占氨回路总不可逆性的80-86%,其中DP的不可逆性为23.8 MW,SP150的不可逆性为27.2 MW。与非氢气回收系统相比,低温吹扫气体处理单元可将回路性能提高9-13%。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号