...
首页> 外文期刊>Energy >Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach
【24h】

Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach

机译:工业氨合成装置的建模和优化:火用方法

获取原文
获取原文并翻译 | 示例
           

摘要

An exergy modelihg and optimization of an industrial ammonia unit based on steam methane reforming (SMR) process is presented. The base-case unit produces about 1000 t NH3/day [1], as well as power and steam, with no auxiliary exergy use. Some critical operation parameters are analyzed and the base-case and optimal operating conditions of the major components are compared. Since the ammonia synthesis process is highly exothermic, higher per-pass conversions in industrial adiabatic reactors are often achieved by using various sequential catalyst beds, where a near-optimum profile of reaction rate vs temperature can be attained by regulating the inlet temperature of each bed. This is performed via internal heat recovery, either by preheating reactor feed gas or by using waste heat boilers, which results in an increase of the steam production and a smaller fuel consumption. But, although such near-optimum operation conditions may lead to higher reaction rates and, thus, lower catalyst volumes could be required, it is found that the optimal design of the ammonia loop is rather determined by the performance of each component and their interdependencies. Moreover, since the proposed objective function (exergy destruction minimization) is very sensitive to specific process variables, the convergence of the solution algorithm is sometimes hindered. The exergy destruction breakdown shows that the ammonia converter and the refrigeration system are together responsible for more than 71-82% of the total exergy destruction in the ammonia loop, which in turn varies between 25.6 and 38.8 MW for optimal and base case operation conditions, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
机译:提出了基于蒸汽甲烷重整(SMR)工艺的工业氨装置的火用模型和优化。基本案例单元每天可产生约1000吨NH3 [1],以及电力和蒸汽,而无需使用辅助火力。分析了一些关键操作参数,并比较了主要组件的基本情况和最佳操作条件。由于氨的合成过程是高放热反应,因此在工业绝热反应器中,通常通过使用各种顺序的催化剂床来获得更高的单程转化率,其中通过调节每个床的入口温度可以获得接近最佳的反应速率与温度的关系曲线。 。这是通过内部热回收进行的,可以通过预热反应器原料气或使用废热锅炉来进行,这导致了蒸汽产量的增加和燃料消耗的减少。但是,尽管这种接近最佳的操作条件可能导致更高的反应速率,因此可能需要更低的催化剂体积,但是发现氨回路的最佳设计实际上取决于每个组件的性能及其相互依赖性。此外,由于拟议的目标函数(最小化能耗破坏)对特定的过程变量非常敏感,因此有时会阻碍求解算法的收敛。火用破坏的分解表明,氨转化器和制冷系统共同构成了氨回路总火用破坏的71-82%以上,而在最佳和基本情况下,氨燃烧的破坏在25.6和38.8 MW之间变化,分别。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号