首页> 外文期刊>Energy & fuels >Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis
【24h】

Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

机译:二甲基环己烷氧化裂解的实验和化学动力学模型研究

获取原文
获取原文并翻译 | 示例
       

摘要

A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049-1544 K and pressures of 3.0-12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K By means of mid-infrared direct laser absorption at 3.39 mu m, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.
机译:进行了1,3-二甲基环己烷(13DMCH)的高温着火和热解的实验和化学动力学的组合研究。在1049-1544 K的温度范围和3.0-12 atm的压力下,在反射的冲击波后面测量点火延迟时间。在1238、1302和1406 K的温度下,在平均压力为4.0 atm的条件下对热解进行了研究。借助于在3.39μm处的中红外直接激光吸收,在点火和热解条件下测量了燃料浓度的时间历史。建立了详细的13DMCH燃烧化学动力学模型。点火测量表明,13DMCH的点火延迟时间长于其异构体乙基环己烷的点火延迟时间。拟议的化学动力学模型可以很好地预测当量比和压力的影响,除了在低稀释水平和高压下,预测和测量的点火延迟时间之间总体上具有良好的一致性。模拟的燃料浓度曲线与测得的曲线非常吻合,并且都突出了高温下热解对整体点火动力学的影响。敏感性和反应途径分析为控制点火和热解的动力学过程提供了进一步的见识。这项工作有助于增进对环烷烃的氧化和热解动力学的理解和建模。

著录项

  • 来源
    《Energy & fuels》 |2016年第10期|8648-8657|共10页
  • 作者单位

    Syracuse Univ, Dept Mech & Aerosp Engn, 263 Link Hall, Syracuse, NY 13244 USA;

    Syracuse Univ, Dept Mech & Aerosp Engn, 263 Link Hall, Syracuse, NY 13244 USA;

    King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia;

    King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia;

    Syracuse Univ, Dept Mech & Aerosp Engn, 263 Link Hall, Syracuse, NY 13244 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号