首页> 美国卫生研究院文献>other >A comprehensive experimental and detailed chemical kinetic modelling study of 25-dimethylfuran pyrolysis and oxidation
【2h】

A comprehensive experimental and detailed chemical kinetic modelling study of 25-dimethylfuran pyrolysis and oxidation

机译:25-二甲基呋喃热解和氧化的综合实验和详细的化学动力学模型研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200–1350 K, pressures from 2–2.5 atm and residence times of approximately 2 ms.Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350–1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820–1210 K.This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770–1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0.Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6–1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms.A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments.Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820–1200 K.At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary.The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work.
机译:为了研究标题物种相对未开发的燃烧化学并提供燃烧器相关的实验数据,已在一系列实验设备中研究了生物燃料2,5-二甲基呋喃(25DMF)的热解和氧化行为。已经在冲击管中使用单脉冲方法对25DMF的热解进行了重新研究,该方法是在1200–1350 K的温度,2-2.5 atm的压力和约2 ms的停留时间下使用3%25DMF在氩气中的混合物。在大气压力,1350–1800 K的温度下,当量比(ϕ)为0.5、1.0和2.0时,测量了0.75%25DMF的氩气混合物的点火延迟时间,并对25DMF的空气混合物中的化学计量燃料进行了自动点火测量在20和80 bar下,从820–1210K。这补充了在770–1220 K,在10.0 atm,0.7 s的停留时间和ϕ =时的喷射搅拌反应器(JSR)中25DMF的氧化形态研究。 0.5、1.0和2.0。已经使用热通量方法在298和358 K的未燃烧气体温度和ϕ = 0.6-1.6的大气压下使用热通量法测量了25DMF空气混合物的层流燃烧速度。这些层流燃烧速度测量结果突出了当前文献数据中的不一致之处,并为动力学机理提供了验证目标。同时开发了包含2768个反应和545种物质的详细化学动力学机理,以描述25DMF在上述实验条件下的燃烧。基于该机制的数值建模结果可以准确地再现大多数实验数据。在高温下,发现氢原子转移反应是25DMF的主要单分子分解途径。还发现氢原子与燃料的反应在预测热解和点火延迟时间实验中也很重要。对先前未探索的25DMF中温燃烧路径的机理和动力学提出了许多建议。突出显示呋喃环上的羟基自由基是重要的燃料消耗反应,导致形成甲基乙烯基酮和乙酰基。还发现HȮ2或CH3Ȯ2与5-甲基-2-呋喃基甲基自由基的化学活化重组,形成5-甲基-2-呋喃基甲氧基和ȮH或CH3Ȯ自由基,对点火延迟时间具有显着的控制作用,并且JSR中物种分布预测中的重要反应。发现在分子温度从820-1200 K的燃料-空气混合物的点火延迟时间估计中,通过分子氧和HȮ2自由基从燃料的烷基侧链提取氢原子的动力学很敏感。在高温下,发现共振稳定的5-甲基-2-呋喃基甲基自由基主要发生双分子反应,因此5-甲基-2-甲酰基呋喃和5-甲基-2-乙基呋喃及其衍生物的亚机理具有还提出了建议的消费途径。这项研究是首次尝试详细模拟这些物质的燃烧的方法,尽管未来可能有必要进行改进。本研究从数量和质量上说明了高潜力生物燃料的复杂化学行为。尽管目前的工作是迄今为止有关25DMF氧化的最全面的研究,但该机制无法在合适的未燃烧气体温度,压力和当量比范围内准确再现层流燃烧速度测量值,尽管实验文献数据中存在差异突出显示。解决这个问题应该仍然是未来工作的重点。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号