...
首页> 外文期刊>Energy Conversion & Management >Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage
【24h】

Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage

机译:具有潜热热能存储的新型太阳能集成供热,制冷和热水系统的传热和火用分析

获取原文
获取原文并翻译 | 示例
           

摘要

A thermal network model is developed to study the performance of a solar thermal-powered heating, cooling and hot water system comprised of evacuated tube collectors, a latent heat thermal energy storage unit and related heat exchangers, and an absorption chiller/heat pump. The system performance is studied for a residential building in a hot climate zone (Phoenix, Arizona) on two typical solar days representative of a relatively cold day and a relatively hot day. A systematic sizing methodology is presented to minimize the phase change material mass and the output temperature fluctuations. An exergy analysis is also performed to quantify the second law efficiency of the system. Analysis of the energy performance of the system shows that more than 80% annual energy saving can be achieved by using a solar collector area of 10 m(2) coupled with a 29 kWh latent heat thermal energy storage system. The effect of the heat transfer design of the thermal energy storage system, in particular the number of condenser pipes of the input heat pipe and evaporator sections of the output heat pipes embedded within the phase change material, on the thermal and exergetic performance of the system is also investigated. It is shown that increasing the number of pipes decreases the temperature fluctuations and increases the exergy efficiency due to minimized temperature drops. Quantitatively, increasing the number of pipes from 60 to 112, decreases the maximum temperature drops across the latent heat thermal energy storage system from about 30 degrees C to 15 degrees C, and increases the exergy efficiency from about 75% to 90%. This study demonstrates the capability of a solar thermal-powered heating, cooling and hot water system integrated with latent heat thermal energy storage to significantly reduce the auxiliary energy input needed to meet the demands of a residential building located in a hot climate zone.
机译:开发了一个热网络模型来研究由抽空的集热器,潜热热能存储单元和相关的热交换器以及吸收式冷却器/热泵组成的太阳能热能供热,制冷和热水系统的性能。针对炎热气候区(亚利桑那州凤凰城)的住宅建筑,在两个相对典型的太阳日和相对炎热的日进行了系统性能研究。提出了一种系统的尺寸确定方法,以最小化相变材料的质量和输出温度的波动。还进行了火用分析以量化系统的第二定律效率。对系统能源性能的分析表明,通过使用10 m(2)的太阳能集热器区域和29 kWh的潜热热能存储系统,可以实现80%以上的年度节能。热能存储系统的传热设计,尤其是嵌入相变材料中的输入热管的冷凝器管数量和输出热管的蒸发器段的数量,对系统的热能和热能性能的影响也进行了调查。结果表明,由于最小化的温度下降,增加管道数量减少了温度波动并提高了火用效率。定量地,将管道的数量从60增加到112,将潜热储热系统中的最大温度降从大约30摄氏度降低到15摄氏度,将火用效率从大约75%增加到90%。这项研究证明了将太阳能热能供暖,制冷和热水系统与潜热热能存储装置集成在一起的能力,可以显着减少满足位于炎热气候区的住宅建筑所需的辅助能量输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号