...
首页> 外文期刊>Geoscientific Model Development Discussions >Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
【24h】

Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model

机译:生态系统年龄级动态和分布在LPJ-WSL V2.0全球生态系统模型中

获取原文
           

摘要

Forest ecosystem processes follow classic responses with age, peaking production around canopy closure and declining thereafter. Although age dynamics might be more dominant in certain regions over others, demographic effects on net primary production (NPP) and heterotrophic respiration (Rh) are bound to exist. Yet, explicit representation of ecosystem demography is notably absent in many global ecosystem models. This is concerning because the global community relies on these models to regularly update our collective understanding of the global carbon cycle. This paper aims to present the technical developments of a computationally efficient approach for representing age-class dynamics within a global ecosystem model, the Lund–Potsdam–Jena – Wald, Schnee, Landschaft version 2.0 (LPJ-wsl v2.0) dynamic global vegetation model and to determine if explicit representation of demography influenced ecosystem stocks and fluxes at global scales or at the level of a grid cell. The modeled age classes are initially created by simulated fire and prescribed wood harvesting or abandonment of managed land, otherwise aging naturally until an additional disturbance is simulated or prescribed. In this paper, we show that the age module can capture classic demographic patterns in stem density and tree height compared to inventory data, and that simulated patterns of ecosystem function follow classic responses with age. We also present two scientific applications of the model to assess the modeled age-class distribution over time and to determine the demographic effect on ecosystem fluxes relative to climate. Simulations show that, between 1860 and 2016, zonal age distribution on Earth was driven predominately by fire, causing a 45- to 60-year difference in ages between older boreal (50–90 ° ?N) and younger tropical (23 ° ?S–23 ° ?N) ecosystems. Between simulation years 1860 and 2016, land-use change and land management were responsible for a decrease in zonal age by ?6 ?years in boreal and by ?21 ?years in both temperate (23–50 ° ?N) and tropical latitudes, with the anthropogenic effect on zonal age distribution increasing over time. A statistical model helped to reduce LPJ-wsl v2.0 complexity by predicting per-grid-cell annual NPP and Rh fluxes by three terms: precipitation, temperature, and age class; at global scales, R 2 was between 0.95 and 0.98. As determined by the statistical model, the demographic effect on ecosystem function was often less than 0.10?kg?C?m ?2 ?yr ?1 but as high as 0.60?kg?C?m ?2 ?yr ?1 where the effect was greatest. In the eastern forests of North America, the simulated demographic effect was of similar magnitude, or greater than, the effects of climate; simulated demographic effects were similarly important in large regions of every vegetated continent. Simulated spatial datasets are provided for global ecosystem ages and the estimated coefficients for effects of precipitation, temperature and demography on ecosystem function. The discussion focuses on our finding of an increasing role of demography in the global carbon cycle, the effect of demography on relaxation times (resilience) following a disturbance event and its implications at global scales, and a finding of a 40?Pg?C increase in biomass turnover when including age dynamics at global scales. Whereas time is the only mechanism that increases ecosystem age, any additional disturbance not explicitly modeled will decrease age. The LPJ-wsl v2.0 age module represents another step forward towards understanding the role of demography in global ecosystems.
机译:森林生态系统过程随着年龄的经典响应,达到顶层封闭和此后下降的峰值生产。虽然年龄动态在其他地区可能更大,但在其他地区可能更占主导地位,但净初级生产(NPP)和异养呼吸(RH)的人口效应必将存在。然而,在许多全球生态系统模型中显着缺席生态系统人口统计学的明确表示。这是因为全球社会依赖于这些模型定期更新我们对全球碳循环的集体了解。本文旨在展示在全球生态系统模型中代表年龄级动态的计算有效方法的技术开发,伦敦 - 波提沙姆 - 耶拿 - 沃尔德,雪尼,山底山山羊320(LPJ-WSL v2.0)动态全球植被模型和确定人口统计学的明确表示是否影响了全局尺度的生态系统股票和助熔剂或网格细胞的水平。建模年龄课程最初是由模拟的火灾和规定的木材收获或放弃管理的土地创建,否则自然而然地衰老,直到模拟或规定了额外的干扰。在本文中,我们表明,与库存数据相比,年龄模块可以捕获茎密度和树高度的经典人口统计模式,并且生态系统函数的模拟模式遵循经典的响应。我们还提出了模型的两个科学应用,以评估所建模的年龄级分布随着时间的推移,并确定相对于气候的生态系统助条的人口效应。模拟表明,在1860年至2016年期间,地球上的地球上的地震年龄分布主要被火灾驶向,导致旧博尔良(50-90°(50-90°(50-90°(50-90°)和更年轻的热带之间的45至60年差异(23°? -23°?n)生态系统。在模拟年度1860年和2016年之间,土地利用变化和土地管理人员负责群体的堕落时间(北方人)和博物群(21岁)和热带纬度(23-50°)和热带纬度,随着时间的推移分布的动态作用随着时间的推移而增加。统计模型通过通过三个术语预测每次网格 - 细胞年度NPP和RH助焊剂来减少LPJ-WSL V2.0复杂性:降水,温度和年龄级;在全球范围内,R 2介于0.95和0.98之间。如统计模型所确定的,对生态系统函数的人口效应通常小于0.10?是最伟大的。在北美的东部森林中,模拟人口效应具有相似的数量,或大于气候的影响;模拟人口效应在每个植被的大陆的大地区同样重要。模拟空间数据集是为全球生态系统年龄和降水,温度和人口缺陷对生态系统函数的影响的估计系数。讨论侧重于我们在全球碳循环中发现人口统计的越来越大,在干扰事件之后,人口统计学对松弛时间(弹性)的影响以及其在全​​球尺度的影响,以及40?PG?C增加在全球尺度包括年龄动态的生物量营业额。然而,时间是增加生态系统时代的唯一机制,任何未明确建模的任何额外干扰都会降低年龄。 LPJ-WSL v2.0年龄模块代表了解人口统计在全球生态系统中的作用前进的另一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号