首页> 外文期刊>PLoS One >Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance
【24h】

Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance

机译:DiAtom Thalassiosira Pseudonana的基因组级代谢模型突出了氮气和硫代谢在氧化还原平衡中的重要性

获取原文
           

摘要

Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m -2 s -1 ) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
机译:硅藻是单细胞光合藻类,已知分泌有机物质,促进海洋中的二次生产品,尽管我们知道他们的生理学如何影响溶解有机物质的组成仍然有限。与所有光合生物一样,他们对能量和减少功率的光线利用产生避免细胞损伤的挑战。为了更好地了解氧化还原平衡和有机物分泌之间的相互作用,我们重建了Thalassiosira Pseudonana菌株CCMP 1335的基因组 - 级代谢模型,是硅藻分子生物学和生理学的模型,具有60年的研究历史。该模型通过通过分布在六个亚细胞室分布的6,079个反应产生的3,079个代谢物网络来模拟1,432个基因的代谢活性。在不同的稳态光条件下(5-20​​0μmolmolm-2s -1)和分批培养物模拟生长,从指数生长到硝酸盐限制和氮饥饿。我们使用模型来检查通过光依赖过程产生的还原剂的耗散,发现当可用时,硝酸盐同化是散发塑性中还原剂的重要手段;在硝酸盐限制条件下,硫酸盐同化起着类似的作用。使用硝酸盐或硫酸盐摄取来平衡氧化还原反应导致不同的有机氮和硫化合物的分泌。这些化合物可以通过表面海洋中的细菌进入。 DiAtom Thalassiosira Pseudonana的模型为生产的机制解释提供了生态和气候性相关的化合物,这些化合物可以作为复杂的交叉王国微生物网络的基础。硅藻代谢对全球生物地球化学有重要影响;海洋微生物的代谢模型将基因链接到生态系统,可能是将分子数据与海洋生物地球化学模型相结合的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号