首页> 外文期刊>International Nano Letters >Band gap opening in graphene: a short theoretical study
【24h】

Band gap opening in graphene: a short theoretical study

机译:石墨烯的带隙开口:一个简短的理论研究

获取原文
           

摘要

Graphene, being a gapless semiconductor, cannot be used in pristine form for nano-electronic applications. Therefore, it is essential to generate a finite gap in the energy dispersion at Dirac point. We present here the tight-binding model Hamiltonian taking into account of various interactions for tuning band gap in graphene. The model Hamiltonian describes the hopping of the π-electrons up to third nearest-neighbours, substrate effects, Coulomb interaction at two sub-lattices, electron–phonon interaction in graphene-on-substrates and high phonon frequency vibrations, besides the bi-layer graphene. We have solved the Hamiltonian using Zubarev’s double time single particle Green’s function technique. The quasi-particle energies, electron band dispersions, the expression for effective band gap and the density of states (DOS) are calculated numerically. The results are discussed by varying different model parameters of the system. It is observed that the electron DOS and band dispersion exhibit linear energy dependence near Dirac point for nearest-neighbour hopping integral. However, the second and third nearest-neighbour hoppings provide asymmetry in DOS. The band dispersions exhibit wider band gaps with stronger substrate effect. The modified gap in graphene-on-substrate attains its maximum value for Coulomb interaction energy (U_{ext{C}} = 1.7 t_{1}). The critical Coulomb interaction is enhanced to (U_{ext{C}} = 2.5 t_{1}) to produce maximum band gap in the presence of electron–phonon interaction and phonon vibration. The bi-layer graphene exhibits Mexican hat type band gap near Dirac point for transverse gating potential. The other conclusions for the present work are described in the text.
机译:图石墨烯是无形半导体,不能用于纳米电子应用的原始形式。因此,必须在DIRAC点处的能量分散中产生有限间隙。我们在这里介绍了紧密的模型Hamiltonian考虑到石墨烯中调谐带隙的各种相互作用。 Model Hamiltonian描述了π-电子达到第三最接近邻居,底物效果,在两个子晶格中的底物效果,库隆相互作用,并且在基板上的电位相互作用以及除了双层之外石墨烯。我们使用Zubarev的双重时间单粒子绿色功能技术解决了Hamiltonian。准粒子能量,电子带分散体,有效带隙的表达和状态(DOS)的表达在数值上计算。通过改变系统的不同模型参数来讨论结果。观察到,电子DOS和带分散表现出靠近最近邻的跳跃积分的DIRAC点附近的线性能量依赖性。然而,第二和第三最近邻的跳线在DOS中提供不对称性。带分散器具有较强的基底效果的宽带间隙。石墨烯对基板中的修改间隙达到了库仑交互能量的最大值(u _ { text {c}} = 1.7 t_ {1} )。临界库相互作用得到增强到(u _ { text {c}} = 2.5 t_ {1}),以在存在电子 - 声子相互作用和声子振动的情况下产生最大频带隙。双层石墨烯在DIRAC点附近呈现典型帽型带隙,用于横向门控电位。本工作的其他结论在文中描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号