...
首页> 外文期刊>ACS Omega >Importance of Electrode Preparation Methodologies in Supercapacitor Applications
【24h】

Importance of Electrode Preparation Methodologies in Supercapacitor Applications

机译:超级电容器应用中电极制备方法的重要性

获取原文
           

摘要

The work reported here aims toward the optimization of electrode preparation methodologies for superior performance of supercapacitors through a rigorous understanding of underlying physical parameters. Oxygen-functionalized few-layer graphene was employed as an active material while binders [Nafion, polyvinylidene fluoride (PVDF), and polytetrafluoroethylene], solvents for active material dispersion [ethylene glycol and N -methyl-2-pyrrolidone (NMP)], and electrode-drying temperatures (100, 170, and 190 °C) were varied. Maximum specific capacitances at different electrode preparation conditions ranged from 240 to 318 F g~(–1) at 1 mV s~(–1) scan rate of cyclic voltammetry for the same active material. The study revealed that the electrodes prepared using the PVDF binder, the NMP solvent for active material dispersion, 170 °C electrode-drying temperature (slightly below the boiling temperature of the solvent) provided the best electrochemical performance. Electrochemical impedance spectroscopy revealed that the resistance for electron transfer at the electrode/electrolyte interface can be minimized while mass transport and pseudocapacitive charging can be improved significantly by tuning electrode preparation methodologies which resulted in smaller time constants and hence better capacitor performances. Scanning electron microscopy images revealed that graphene layers were properly stacked much similar to the synthesized nanomaterial wherein better electrochemical performances were achieved, avoiding the agglomeration of nanomaterials on the electrode surface. Low viscosity of the solvent for active material dispersion and better solubility of the binder in the solvent helped to reduce the agglomeration of nanomaterials by minimizing the strong van der Waals interaction which causes agglomeration.
机译:这里报道的工作旨在通过对潜在物理参数的严格理解来优化超级电容器的优异性能。氧官能化的少数层石墨烯作为活性材料,而粘合剂[Nafion,聚偏二氟乙烯(PVDF)和聚四氟乙烯],用于活性物质分散的溶剂ε-乙二醇和 N-甲基-2-吡咯烷酮(NMP) [和电极干燥温度(100,170和190℃)变化。不同电极制备条件的最大特定电容范围为240至318°F G〜(-1),以1mV S〜(-1)循环伏安法的循环伏安法,用于相同的活性材料。该研究表明,使用PVDF粘合剂制备的电极,用于活性物质分散的NMP溶剂,170℃电极干燥温度(略低于溶剂的沸腾温度)提供了最佳的电化学性能。电化学阻抗光谱显示,通过调谐电极制备方法可以显着提高电极/电解质界面在电极/电解质界面处的电子传递的电阻可以最大限度地提高,该方法可以显着改善导致较小的时间常数并因此更好的电容性能。扫描电子显微镜图像显示,石墨烯层与合成的纳米材料相似地堆叠得多得多,其中达到了更好的电化学性能,避免了电极表面上的纳米材料的附聚。用于活性物质分散的溶剂的低粘度,并通过最小化引起附聚的强化范德华相互作用,使溶剂中的粘合剂更好地溶解粘合剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号