首页> 外文期刊>Applied Microbiology >Probabilistic Model of Microbial Cell Growth, Division, and Mortality
【24h】

Probabilistic Model of Microbial Cell Growth, Division, and Mortality

机译:微生物细胞生长,分裂和死亡率的概率模型

获取原文
           

摘要

After a short time interval of length δ t during microbial growth, an individual cell can be found to be divided with probability P_(d) ( t )δ t , dead with probability P_(m) ( t )δ t , or alive but undivided with the probability 1 ? [ P_(d) ( t ) + P_(m) ( t )]δ t , where t is time, P_(d) ( t ) expresses the probability of division for an individual cell per unit of time, and P_(m) ( t ) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With P_(d) ( t ) and P_(m) ( t ) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.
机译:在微生物生长过程中经过短时间间隔的长度δt之后,可以发现单个细胞被划分为概率P_(d)(t)δt,死于概率P_(m)(t)δt或存活但不可除以1? [P_(d)(t)+ P_(m)(t)]δt,其中t为时间,P_(d)(t)表示每单位时间单个单元划分的概率,P_(m )(t)表示每单位时间死亡的概率。这些概率可能会随人口状况和栖息地属性而变化,因此是时间的函数。此方案转换为以随机和确定性版本表示的模型。第一个是随机过程模型,监视单个细胞的命运并确定细胞数。它特别适用于小规模人群,例如在病原体偶然污染食品的情况下可能存在的人群。第二个可以看作是随机模型的人口上限,它是一个连续的数学表达式,它描述了人口数量随时间的变化。它适用于大型微生物种群,例如未加工食品中的微生物种群。带有或不带有滞后的指数或逻辑增长,带有或不带有“肩”的失活,以及增长和失活之间的过渡都是模型潜在概率结构的体现。具有与温度相关的参数,该模型可用于模拟非等温生长和失活模式。相同的概念也适用于其他促进或抑制微生物的因素,例如pH值和抗菌剂的存在等。利用逻辑函数形式的P_(d)(t)和P_(m)(t),模型可以模拟所有通常观察到的生长/死亡模式。如模拟数据所示,可以使用模型的随机和确定性版本获得变化的概率参数的估计值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号