首页> 外文学位 >Dynamic modelling and optimisation of microbial fuel cells and microbial electrolysis cells.
【24h】

Dynamic modelling and optimisation of microbial fuel cells and microbial electrolysis cells.

机译:微生物燃料电池和微生物电解池的动态建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

The first contribution of this thesis is the development of microbial fuel cell (MFC) and microbial electrolysis cells (MEC) models capable of describing the dynamics of substrate consumption, microorganism's growth, and electricity (MFCs) or H2 (MECs) generation. By using ordinary differential equations to describe biomass growth and substrate consumption in the anodic compartments, a fast numerical solution was found for both models. First a MFC model describing the acetate competition between electricigenic and acetoclastic methanogenic microorganisms was developed. The MEC model foundation was based on the concepts presented in the MFC model. By including fermentative and hydrogenotrophic methanogenic microorganisms, the MEC model was able to predict hydrogen production from wastewater degradation. Model parameters were estimated for both models with experimental results obtained in continuous flow, gas diffusion cathode MFCs and MECs. Only model parameters with small confidence intervals were selected to be estimated. Moreover, using independent experimental data sets, both models were validated and were successful in describing experimental results at diverse operating conditions.;A further contribution of this thesis is the analysis of both models for process optimisation. Preliminary analysis demonstrated the influence of operating conditions on product generation for both models. Interestingly, the external resistance and the applied voltage (manipulated variables for MFCs and MECs respectively) were shown to significantly influence the biofilm microbial composition. This aspect was further analysed for the MFC model with a steady state analysis of the biofilm composition. It was shown that depending on the selection of the external resistance, the MFC biofilm could present three scenarios: (i) the coexistence of both microbial populations; or the exclusion of one of the microbial population with (ii) only electricigens, or (iii) only methanogens present. Following these results, a comparison between the substrate consumption of the three scenarios was performed, showing that coexistence always leads to lower substrate consumption. The treatment capacity of MFCs was then optimised by reactor staging. The optimum treatment capacity of a unit with two staged reactors was shown to depend on the influent concentration and effluent requirement. Finally, experiments using acetate-fed MFCs were presented to qualitatively confirm the effects of external resistance on the biofilm composition.;The last contribution of this thesis is the presentation of a unified MFC/MEC model, which includes electricigenic and methanogenic microorganisms in the anode compartment, while the electrochemical balance accounts for the cathode differences between the MFC and MEC. The model is first analysed in terms of biofilm composition, which is shown to depend on the reactor's operating current. Once more, biofilm coexistence was present only for a defined interval of operating current. An optimisation study was performed to maximise electricity (MFC) or H2 production (MEC), while respecting a treatment requirement. By defining power productivity functions for both reactors, analytical optimum current expressions were found and were shown to be the same for MFCs and MECs. Furthermore, these expressions were dependent on the reactor's internal resistance. Finally, an alternative MEC productivity function was defined and analysed. This productivity was a function of the H2 production efficiency and its unique analytical optimum solution was shown to be independent of the reactor's internal resistance. (Abstract shortened by UMI.)
机译:本论文的第一个贡献是开发了微生物燃料电池(MFC)和微生物电解池(MEC)模型,该模型能够描述底物消耗,微生物的生长以及电力(MFCs)或H2(MECs)生成的动态。通过使用常微分方程描述阳极室中的生物量增长和底物消耗,可以找到两个模型的快速数值解。首先建立了MFC模型,该模型描述了电致和产甲烷的产甲烷微生物之间的乙酸竞争。 MEC模型的基础是基于MFC模型中提出的概念。通过包括发酵性和氢营养性产甲烷微生物,MEC模型能够预测废水降解产生的氢气。估计了两个模型的模型参数,并在连续流,气体扩散阴极MFC和MEC中获得了实验结果。仅选择具有较小置信区间的模型参数进行估计。此外,使用独立的实验数据集,这两个模型都得到了验证,并成功地描述了在不同操作条件下的实验结果。;本论文的另一贡献是对两个模型的过程优化进行了分析。初步分析表明,两种型号的操作条件对产品生成的影响。有趣的是,外部电阻和施加的电压(分别针对MFC和MEC的控制变量)显示出对生物膜微生物组成的显着影响。通过对生物膜组成进行稳态分析,进一步分析了MFC模型的这一方面。结果表明,根据外部抗性的选择,MFC生物膜可能会呈现三种情况:(i)两种微生物种群共存;或排除一种微生物种群,其中仅存在(ii)电气化剂,或(iii)仅存在产甲烷菌。根据这些结果,进行了三种情况下基板消耗量的比较,表明共存始终会降低基板消耗量。然后通过反应器分级优化MFC的处理能力。已显示具有两级反应器的装置的最佳处理能力取决于进水浓度和出水要求。最后,提出了使用乙酸盐喂养的MFCs的实验,以定性地确认外部阻力对生物膜组成的影响。本论文的最后贡献是提出了一个统一的MFC / MEC模型,该模型包括阳极中的产电和产甲烷微生物电化学平衡是MFC和MEC之间阴极差异的原因。首先根据生物膜组成对模型进行分析,结果表明该模型取决于反应器的工作电流。再一次,生物膜共存仅在确定的工作电流间隔内存在。进行了优化研究,以最大限度地提高电力(MFC)或H2产生量(MEC),同时尊重治疗要求。通过定义两个电抗器的功率生产率函数,可以找到最佳分析电流表达式,并且对于MFC和MEC来说,它们是相同的。此外,这些表达式取决于反应堆的内阻。最后,定义并分析了另一种MEC生产率函数。该生产率是氢气生产效率的函数,并且其独特的分析最佳解决方案显示出与反应堆的内阻无关。 (摘要由UMI缩短。)

著录项

  • 作者

    Pinto, Roberto Pires.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Alternative Energy.;Engineering Environmental.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号