...
首页> 外文期刊>Applied and Environmental Microbiology >Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase
【24h】

Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

机译:使用NADPH特异性酒精脱氢酶提高酿酒酵母中的厌氧乙酸盐消耗量和乙醇收率

获取原文
           

摘要

Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter?1 acetate during fermentation of 114 g liter?1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter?1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter?1 and raised the ethanol yield to 7% above the wild-type level.
机译:酿酒酵母最近被设计成使用乙酸盐(木质纤维素水解产物中的主要抑制剂)作为厌氧乙醇发酵过程中的共底物。但是,最初设计为将乙酸盐转化为乙醇的代谢途径使用了NADH特异性乙酰化乙醛脱氢酶和醇脱氢酶,即使在取消甘油形成的情况下,NADH的利用率也很快受到限制。我们目前酒精脱氢酶作为酿酒酵母厌氧氧化还原工程的新型目标。引入NADPH特异性醇脱氢酶(NADPH-ADH)不仅减少了乙酸盐转化为乙醇途径的NADH需求,而且使细胞能够在糖发酵过程中将NADPH有效地交换为NADH。与NADH不同,NADPH可以在缺氧条件下通过氧化戊糖磷酸途径自由生成。我们发现,以原始途径(从青春双歧杆菌表达乙酰化乙醛脱氢酶并缺失3-磷酸甘油脱氢酶基因GPD1和GPD2的基因)改造的工业生物乙醇菌株在114 g升?1的发酵过程中消耗了1.9 g升?1乙酸盐。葡萄糖。结合甘油产量从4.0升至0.1 g升?1的降低,与野生型相比,乙醇的产量提高了4%。我们提供的证据表明,该菌株中的乙酸盐消耗量确实受到NADH可用性的限制。通过从溶组织性变形杆菌中引入NADPH-ADH并过表达ACS2和ZWF1,我们将乙酸盐的消耗量增加到5.3 g升?1,并将乙醇的产率提高到野生型水平的7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号