...
首页> 外文期刊>Journal of Physics Communications >Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single superparamagnetic nanoparticle resolution
【24h】

Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single superparamagnetic nanoparticle resolution

机译:了解磁力显微镜中的静电和磁力:朝着单个超顺磁性纳米粒子的分辨率

获取原文
           

摘要

The detection of superparamagnetic nanoparticles by magnetic force microscopy (MFM) at the single particle level faces difficulties such as superposition of nonmagnetic signals caused by electrostatic interactions as well as reaching the resolution limits due to small magnetic interactions. In MFM the magnetic force is measured at a certain distance to the substrate following the topography measured in a first scan to avoid an influence of short range forces (lift mode). In this work we showed that performing MFM on superparamagnetic nanoparticles the increase of the tip-substrate distance above the nanoparticle in lift mode scans leads to a reduction of the electrostatic forces resulting in a positive phase shift in contrast to the negative phase shift of the attractive magnetic force. Identifying the electrostatic force in MFM on nanoparticles as a capacitive coupling effect between tip and substrate the origin of often seen topography mirroring in phase images of nanoparticles in general is theoretically explained and experimentally proved. Minimization of the capacitive coupling by adjusting the work function difference between tip and substrate as well as using an optimized tip allows the magnetic visualization of single 10nmsuperparamagnetic iron oxide nanoparticles (SPIONs) at ambient conditions with and without an external magnetic field.
机译:通过磁力显微镜(MFM)在单个粒子水平上检测超顺磁性纳米粒子面临着许多困难,例如静电相互作用引起的非磁性信号叠加,以及由于较小的磁性相互作用而达到分辨率极限。在MFM中,为了避免短程力(提升模式)的影响,在第一次扫描中测量形貌之后,在距基板一定距离处测量了磁力。在这项工作中,我们证明了对超顺磁性纳米粒子进行MFM时,在提升模式扫描中,纳米粒子上方的尖端与基底之间的距离增加,导致静电力的减小,从而导致了正相移,而有吸引力的负相移则相反。磁力。从理论上解释和实验证明,将MFM上的静电力识别为纳米粒子在尖端和基底之间的电容耦合效应,通常是纳米粒子相图像中经常看到的形貌镜像的起源。通过调节针尖和基材之间的功函数差异以及使用优化的针尖来最小化电容耦合,可以在环境条件下(有或没有外部磁场)对单个10nm超顺磁性氧化铁纳米粒子(SPIONs)进行磁化可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号