首页> 外文期刊>Journal of Computation & Modeling >Splitting Approach to Coupled Navier-Stokes and Molecular Dynamics Equations
【24h】

Splitting Approach to Coupled Navier-Stokes and Molecular Dynamics Equations

机译:Navier-Stokes与分子动力学方程耦合的分裂方法

获取原文
           

摘要

In this paper, we present a multi-scale method with a splitting approach based on iterative operator splitting methods, which takes into account the disparity of the macro- and microscopic scales. We couple the Navier–Stokes and the Molecular Dynamics equations, while taking into account their underlying scales. The underlying ideas are to save computational costs by decoupling complicated systems. Combining relaxation methods and averaging techniques we can optimize the computational effort. The motivation arose from modeling fluid transport under the influence of a multiscale problem, which has to be solved with smaller time scales, e.g., non-Newtonian flow problem. The applications include colloid damper or fluid–solid problems, where we study an area where the Navier–Stokes equations have less information about the stream field and we need at least the Boltzmann equation to obtain enough information about the whole density field. A novel research field is, e.g., Carbon Nanotubes, where we have to couple macro- and micromodels and obtain a fluid–solid area which uses the Lennard–Jones fluid model. The proposed method for solving such delicate problems enables simulations in which the continuum flow aspects of the flow are described by the Navier–Stokes equations at time-scales appropriate for this level of modeling, while the viscous stresses within the Navier–Stokes equations are the result of Molecular Dynamics simulations, with much smaller time-scales. The main benefit of the proposed method is that the time dependent flows can then be modeled with a computational effort which is significantly smaller than if the complete flow were to be modeled at the molecular level, as a result of the different time-scales at the continuum and molecular levels, enabled by the application of the iterative operator-splitting method. We discuss the convergence analysis of these splitting methods, see also [26]. Finally we present numerical results for the modified methods and applications to real-life flow problems.
机译:在本文中,我们提出了一种基于迭代算子分裂方法的分裂方法的多尺度方法,该方法考虑了宏观尺度和微观尺度的差异。我们将Navier-Stokes方程和Molecular Dynamics方程耦合在一起,同时考虑了它们的基本尺度。基本思想是通过将复杂的系统解耦来节省计算成本。结合松弛方法和平均技术,我们可以优化计算工作量。动机来自在多尺度问题的影响下对流体输送进行建模的问题,该问题必须以较小的时间尺度来解决,例如,非牛顿流问题。应用包括胶体阻尼器或流体-固体问题,我们在其中研究Navier-Stokes方程对流场的信息较少的区域,至少需要Boltzmann方程来获得有关整个密度场的足够信息。一个新的研究领域是,例如,碳纳米管,我们必须耦合宏观模型和微观模型并获得使用Lennard-Jones流体模型的流体-固体区域。所提出的解决此类棘手问题的方法使仿真成为可能,在该仿真中,Navier-Stokes方程以适合于此建模水平的时间尺度描述了流动的连续流方面,而Navier-Stokes方程中的粘性应力为分子动力学模拟的结果,时间尺度要小得多。所提出的方法的主要好处是,与时间相关的流可以用计算量来建模,这要比在分子水平上对完整的流进行建模时要小得多,这是由于在时间上不同的时标所致。连续水平和分子水平,通过迭代操作符拆分方法的应用而实现。我们讨论了这些分割方法的收敛性分析,另请参见[26]。最后,我们给出了修改后的方法及其在现实生活中的流动问题的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号