...
首页> 外文期刊>Hereditas >Phylogenetic relationships among Robertsonian karyomorphs of Graomys griseoflavus (Rodentia, Muridae) by mitochondrial cytochrome b DNA sequencing
【24h】

Phylogenetic relationships among Robertsonian karyomorphs of Graomys griseoflavus (Rodentia, Muridae) by mitochondrial cytochrome b DNA sequencing

机译:线粒体细胞色素b DNA测序技术对灰黄褐变罗伯森氏菌核型之间的亲缘关系

获取原文
           

摘要

Graomys griseoflavus (Waterhouse 1837) is a phyllotine murid rodent widely distributed in Argentina with Robertsonian autosomal polymorphisms, showing karyomorphs with diploid numbers equal to 42, 41, 38, 37, 36, 35 and 34 (Zambelli et al. 1994). In Graomysgriseoflavus, cytogenetic and molecular data supported the ancestrality of the 2n=42 karyomorph (Gardner and Patton 1976; Zambelli et al. 1994; Zambelli and Vidal-Rioja 1999) and it was proposed a chromosomal divergence pathway to explain the karyotype variability observed. Starting from 2n=42 karyomorph, two lines derived: one producing very low frequent 2n=41 individuals and the other, 2n=38 specimens. The 2n=38 karyomorphs were the consequence of two homozygous Robertsonian fusions (RF) that occurred in 2n=42 (RF15–17 and RF16–18) producing diploid number reduction. From 2n=38, the 2n=37, 36, 35 and 34 karyomorphs have appeared by a non-random downward sequence of Robertsonian fusions: RF1–6 and RF2–5 (Table 1; Zambelli et al. 1994).Table1. Robertsonian fusions found in each karyomorph of G. griseoflavus 2nRF1–6RF2–5RF15–17RF16–18Ht: heterozygousHm: homozygous–: absence of the RF42––––41Ht–––38––HmHm37Ht–HmHm36Hm–HmHm35HmHtHmHm34HmHmHmHmIn the area studied, the 2n=42 individuals inhabit the “Espinal” and “Western Chaco” phytogeographic regions located in central Argentina, while the 2n=38, 37, 36, 35, 34 complex (2n=38?34) mainly occupies the “Monte” region in the western-central area of the country. There are no significant geographic barriers separating different populations of Graomys, in fact, narrow overlapping zones occur in some regions (Theiler and Blanco 1996a; Tiranti 1998). In the laboratory, matings between 2n=42/41, 38/37, 38/36 and 37/37 karyomorphs resulted in F1 and F2 fertile progenies while matings between 2n=42/38, 42/37 and 42/36 individuals failed to breed or gave sterile hybrids heterozygous for RF15–17 and RF16–18 (Zambelli et al. 1994; Theiler and Blanco 1996a,b). Among the total wild animals sampled during 15 years (about 150) heterozygous specimens for these RFs were never reported. This finding was attributed to a possible relationship between the chromosomal rearrangements and the mechanism of reproductive isolation. We suggested that gametic cell precursors bearing the RF15–17 and 16–18 in heterozygous state fail to segregate during meiosis, affecting the fertility of the heterozygous individuals (Zambelli et al. 1994).Based on allozyme and reproductive behaviour analyses, Theiler and Blanco (1996b) and Theiler et al. (1999) revised the taxonomic status of Graomys and reassigned them to two sibling species: Graomys centralis for the 2n=42 specimens, and Graomys griseoflavus for the 2n=38?36 complex. In this revision these authors did not include the 2n=41, 35 and 34 specimens.The homozygous RF15–17 and RF16–18 are the common chromosomal feature in the 2n=38?34 complex, and their presence may be correlated with the Nucleolar Organizer Regions (NOR) pattern and satellite DNA organization. Analysis of NOR locations both by silver staining (Ag-NOR) and in situ hybridization revealed that the 2n=42 exhibit highly variable Ag-NOR patterns both in number and chromosome location, while 2n=38?34 karyomorphic group showed a single Ag-NOR pattern. The latter animals underwent two NOR deletions in reference to the 2n=42 karyomorphs, one of which would be the consequence of a Robertsonian fusion and the other would be produced by unequal crossing-over mechanism (Zambelli and Vidal-Rioja 1996). On the other hand, the Graomys chromosomal divergence has been correlated with molecular organization of two satellite DNA families (EG250 and Hpa3.2). When all karyomorphs were compared, a clear differentiation between 2n=42?41 and 2n=38?34 was found at the level of methylation pattern of the EG250 satellite, and the molecular organization of Hpa3.2 satellite, which is much more abundant in the 2n=38?34 group than in the 2n=42?41 (Zambelli and Vidal-Rioja 1999).Desp
机译:Graomys griseoflavus(Waterhouse 1837)是一种螺菌素啮齿动物,广泛分布于阿根廷,具有罗伯逊常染色体多态性,显示具有二倍体数分别等于42、41、38、37、36、35和34的核型(Zambelli等,1994)。在黄褐藻中,细胞遗传学和分子数据支持了2n = 42核型的祖先(Gardner和Patton 1976; Zambelli等1994; Zambelli和Vidal-Rioja 1999),并提出了一种染色体发散途径来解释观察到的核型变异性。从2n = 42核型开始,衍生出两系:一系产生非常低的2n = 41个人,另一系产生2n = 38个标本。 2n = 38核型是2n = 42(RF15-17和RF16-18)中发生的两次纯合罗伯逊融合(RF)的结果,导致二倍体数量减少。从2n = 38开始,罗伯逊融合的非随机向下序列出现了2n = 37、36、35和34个核型:RF1-6和RF2-5(表1; Zambelli等人,1994)。表1。在黄褐藻2nRF1–6RF2–5RF15–17RF16–18Ht的每个核型中发现的罗伯逊融合体:杂合Hm:纯合子–:RF42 –––– 41Ht––38–HmHm37Ht–HmHm36Hm–HmHmHHHHmHmHmHmHmHmHm 2n = 42个人居住在阿根廷中部的“ Espinal”和“ Western Chaco”植物地理区域,而2n = 38、37、36、35、34复合体(2n = 38?34)主要分布在阿根廷的“ Monte”区域国家的中西部地区。没有区分Graomys不同种群的重大地理障碍,实际上,某些地区出现了狭窄的重叠区域(Theiler和Blanco 1996a; Tiranti 1998)。在实验室中,2n = 42 / 41、38 / 37、38 / 36和37/37核型的交配导致F1和F2可育后代,而2n = 42 / 38、42 / 37和42/36的个体交配失败。繁殖或使不育杂种对RF15-17和RF16-18杂合(Zambelli等,1994; Theiler和Blanco,1996a,b)。在15年内采样的全部野生动物中(约150个),从未报告过这些RF的杂合标本。该发现归因于染色体重排与生殖分离机制之间的可能关系。我们建议携带杂合子状态的RF15-17和16-18的配子细胞前体在减数分裂过程中不能分离,从而影响杂合子个体的繁殖力(Zambelli等,1994)。基于同工酶和生殖行为分析,Theiler和Blanco (1996b)和Theiler等。 (1999年)修改了Graomys的分类学地位,并将它们重新分配为两个兄弟种:2n = 42个标本的中央Graomys centralis,2n = 38-36个复杂的Graomys griseoflavus。在本次修订中,这些作者未包括2n = 41、35和34个标本。纯合子RF15-17和RF16-18是2n = 38?34复合物中的常见染色体特征,它们的存在可能与核仁有关组织者区域(NOR)模式和卫星DNA组织。通过银染色(Ag-NOR)和原位杂交对NOR位置进行的分析表明,2n = 42在数量和染色体位置上均显示高度可变的Ag-NOR模式,而2n = 38?34核型组显示单个Ag- NOR模式。相对于2n = 42核型,后一种动物经历了两个NOR缺失,其中一个是罗伯逊融合的结果,另一个是通过不平等的交叉机制产生的(Zambelli和Vidal-Rioja 1996)。另一方面,Graomys染色体发散与两个卫星DNA家族(EG250和Hpa3.2)的分子组织有关。比较所有核型后,在EG250卫星的甲基化模式水平和Hpa3.2卫星的分子组织水平方面,在2n = 42?41和2n = 38?34之间有明显的区别。 2n = 38?34组比2n = 42?41组(Zambelli and Vidal-Rioja 1999)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号