首页> 外文期刊>The Internet Journal of Microbiology >Influence Of Deubiquitinating Enzymes On Mutagenesis In Saccharomyces Cerevisiae
【24h】

Influence Of Deubiquitinating Enzymes On Mutagenesis In Saccharomyces Cerevisiae

机译:去泛素化酶对酿酒酵母诱变的影响

获取原文
           

摘要

In recent years, it became clear that the mutagenic effect of base alterations in a DNA template is dependent on bypass synthesis, carried out by one or more translesion polymerases. A critical role for proliferating cell nuclear antigen (PCNA) and its ubiquitination following DNA damage has been established. Among Saccharomyces cerevisiae deletion mutants in which UV mutagenesis is compromised, we identified and characterized a mutant of the ubiquitin recycling protein Doa4. Similar cases may be represented by Doa1, previously described by others, as well as Bro1 and Ubi4. We discuss overall altered ubiquitin levels or failure to deubiquitinate specific target proteins as likely explanations. This study is of relevance for understanding and possibly modifying the mutagenic effect of DNA-damaging agents in environmental toxicology, cancer treatment and cancer prevention. Introduction The cellular responses to various kinds of DNA damage have by now been elucidated to a significant degree in pro- and eukaryotes (Friedberg et al., 2006). However, concepts explaining one of the most severe consequences of DNA damaging treatments – the enhancement of mutagenesis – have emerged only during the last few years. With the discovery of translesion polymerases, however, the frequently postulated replicative bypass of altered bases of reduced coding capacity gained a mechanistic foundation. Data from the eukaryotic model budding yeast (Saccharomyces cerevisiae) were essential for this progress and the basic mechanisms appear to be evolutionarily conserved. Pathways leading to mutation are best understood for DNA damage by UV-C radiation, resulting in pyrimidine dimers. The prototype of an error-prone polymerase is polymerase ?eta, the complex of proteins Rev3 and Rev7 (Nelson et al., 1996b). This polymerase is responsible for most induced and spontaneous mutagenic events. Of equal importance is Rev1, a deoxycytidyl transferase with an independent structural role in mutagenesis, possibly as a platform for several bypass polymerases (Acharya et al., 2005; Acharya et al., 2007; Acharya et al., 2006; Guo et al., 2006a; Nelson et al., 1996a). In contrast to this error-prone bypass, a mostly error-free bypass of the most frequent UV photoproducts, dipyrimidine cyclobutane-type dimers is catalyzed by polymerase eta (Johnson et al., 1999; Yu et al., 2001). Consequently, the enzyme’s action lowers overall mutability since it competes with error-prone bypass mechanisms. A second major error-free tolerance pathway of different mechanism is the Rad5 pathway that appears to involve template switching (Li et al., 2002; Zhang and Lawrence, 2005). The current concept of bypass pathway choice is based upon PCNA and its modifications by ubiquitin (Ub) and SUMO (Fig. 1). Monoubiquitination of PCNA (at K164 in yeast) is found after methylmethane sulfonate (MMS) or UV treatment (Hoege et al., 2002; Kannouche et al., 2004) and a requirement of ubiquitinated PCNA for UV mutagenesis has indeed been demonstrated (Stelter and Ulrich, 2003; Zhang et al., 2006). The Rad6-Rad18 complex can bind to single-stranded DNA (Bailly et al., 1994; Bailly et al., 1997) which emerges as a consequence of blocked replication. The Ub conjugating activity of Rad6 catalyzes monoubiquitination of PCNA at K164 which increases its affinity for bypass polymerases (Guo et al., 2006b; Kannouche et al., 2004). Monoubiquitination of PCNA attracts error-prone polymerases mediating a mutagenic bypass, presumably through the ubiquitin-binding domain of Rev1. On the other hand, the signal for the error-free bypass by template-switching is subsequent K63-linked polyubiquitination, resulting from the action of the Ubc13-Mms2-Rad5 complex, with the Ubc13-Mms2 heterodimer functioning as the ubiquitin-conjugating (E2) enzyme in conjunction with the Rad5 (E3) ubiquitin ligase (Hoege et al., 2002; Ulrich and Jentsch, 2000).
机译:近年来,很明显,DNA模板中碱基改变的诱变作用取决于旁路合成,该合成是由一种或多种跨病变聚合酶进行的。已经确立了DNA损伤后增殖细胞核抗原(PCNA)及其泛素化的关键作用。在其中酿酒酵母的酿酒酵母缺失突变体中,紫外线诱变受到损害,我们鉴定并鉴定了泛素回收蛋白Doa4的突变体。类似的情况可能由以前由其他人描述的Doa1以及Bro1和Ubi4代表。我们讨论了整体改变的泛素水平或未能使特定靶蛋白脱泛素,这可能是解释。这项研究对于理解和可能改变DNA破坏剂在环境毒理学,癌症治疗和癌症预防中的诱变作用具有重要意义。引言迄今为止,在原核生物和真核生物中已经充分阐明了细胞对各种DNA损伤的反应(Friedberg等,2006)。但是,仅在最近几年才出现了解释DNA破坏治疗最严重后果之一的概念,即诱变的增强。然而,随着跨病变聚合酶的发现,经常假定的编码能力降低的碱基改变的复制旁路获得了机理基础。真核模型萌芽酵母(酿酒酵母)的数据对于这一进展至关重要,并且基本机制似乎在进化上是保守的。最好理解导致突变的途径是UV-C辐射对DNA的损伤,从而导致嘧啶二聚体。容易出错的聚合酶的原型是聚合酶β,即Rev3和Rev7蛋白的复合体(Nelson等,1996b)。该聚合酶负责大多数诱发和自发的诱变事件。同样重要的是Rev1,它是一种在诱变过程中具有独立结构作用的脱氧胞苷基转移酶,可能作为多种旁路聚合酶的平台(Acharya等人,2005; Acharya等人,2007; Acharya等人,2006; Guo等人,2006a; Nelson等,1996a)。与这种容易出错的旁路相反,聚合酶eta催化最频繁的UV光产物二嘧啶环丁烷型二聚体几乎没有错误地旁路(Johnson等,1999; Yu等,2001)。因此,该酶的作用降低了整体变异性,因为它与容易出错的旁路机制竞争。不同机制的第二个主要的无错误耐受途径是Rad5途径,该途径似乎涉及模板切换(Li等,2002; Zhang和Lawrence,2005)。当前旁路途径选择的概念是基于PCNA及其对泛素(Ub)和SUMO的修饰(图1)。在甲基甲烷磺酸盐(MMS)或UV处理后(Hoege等人,2002; Kannouche等人,2004)发现PCNA(在酵母中的K164)的单泛素化,并且确实证明了泛素化PCNA可以诱变UV(Stelter (Ulrich,2003; Zhang等,2006)。 Rad6-Rad18复合物可与单链DNA结合(Bailly等,1994; Bailly等,1997),这是复制受阻的结果。 Rad6的Ub共轭活性可催化PCNA在K164的单泛素化,从而增加其对旁路聚合酶的亲和力(Guo等,2006b; Kannouche等,2004)。 PCNA的单泛素化吸引容易出错的聚合酶,介导诱变的旁路,大概是通过Rev1的泛素结合域。另一方面,通过模板切换实现无错旁路的信号是随后的K63连锁多聚泛素化,这是由Ubc13-Mms2-Rad5复合体的作用产生的,其中Ubc13-Mms2异二聚体起着泛素结合的作用( E2)酶与Rad5(E3)泛素连接酶结合(Hoege等,2002; Ulrich和Jentsch,2000)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号