...
首页> 外文期刊>PLoS Genetics >Distinct Roles of Meiosis-Specific Cohesin Complexes in Mammalian Spermatogenesis
【24h】

Distinct Roles of Meiosis-Specific Cohesin Complexes in Mammalian Spermatogenesis

机译:减数分裂特异性黏着蛋白复合物在哺乳动物精子发生中的不同作用。

获取原文
           

摘要

Mammalian meiocytes feature four meiosis-specific cohesin proteins in addition to ubiquitous ones, but the roles of the individual cohesin complexes are incompletely understood. To decipher the functions of the two meiosis-specific kleisins, REC8 or RAD21L, together with the only meiosis-specific SMC protein SMC1β, we generated Smc1 β~( -/- ) Rec8 ~( -/- )and Smc1β ~( -/- ) Rad21L ~( -/- )mouse mutants. Analysis of spermatocyte chromosomes revealed that besides SMC1β complexes, SMC1α/RAD21 and to a small extent SMC1α/REC8 contribute to chromosome axis length. Removal of SMC1β and RAD21L almost completely abolishes all chromosome axes. The sex chromosomes do not pair in single or double mutants, and autosomal synapsis is impaired in all mutants. Super resolution microscopy revealed synapsis-associated SYCP1 aberrantly deposited between sister chromatids and on single chromatids in Smc1β ~( -/- ) Rad21L ~( -/- )cells. All mutants show telomere length reduction and structural disruptions, while wild-type telomeres feature a circular TRF2 structure reminiscent of t-loops. There is no loss of centromeric cohesion in both double mutants at leptonema/early zygonema, indicating that, at least in the mutant backgrounds, an SMC1α/RAD21 complex provides centromeric cohesion at this early stage. Thus, in early prophase I the most prominent roles of the meiosis-specific cohesins are in axis-related features such as axis length, synapsis and telomere integrity rather than centromeric cohesion. Author Summary Unlike somatic cells, which feature two different cohesin complexes, in spermatocytes at least six distinct cohesin complexes form, whose concerted functions are little understood. This study focuses on three meiosis-specific cohesins. Meiosis features specific chromosome structures and dynamics, and we revealed individual contributions of meiotic cohesin complexes to chromosome axes length, centromeric cohesion, telomere integrity and synapsis. The only meiosis-specific SMC protein, SMC1β, was removed leaving only complexes based on the universal SMC1α. In addition to SMC1β, either one of the two meiosis-specific kleisins REC8 or RAD21L, proteins that close the cohesin ring-like structure, were eliminated. “Double-knockout” mutants were compared to the single “knockouts” and wild-type. Telomeres and chromosome synapsis are impaired to different degrees in all mutants. In early prophase I prominent roles of meiosis-specific cohesins are in axis length and synapsis rather than centromeric cohesion. Removal of SMC1β and RAD21L almost completely abolishes all chromosome axes. Centromeric cohesion is initially provided by SMC1α complex(es). Later in meiosis, SMC1β ensures centromeric cohesion, suggesting functional replacement of SMC1α. Thus, different cohesin complexes in spermatocytes contribute distinctly to different structures and processes in these cells, but there is also some functional redundancy.
机译:哺乳动物的减数分裂细胞除了普遍存在的蛋白质外,还具有四种减数分裂特异性黏附蛋白蛋白,但单个黏附蛋白复合物的作用尚不完全清楚。为了破译两个减数分裂特有的kleisins REC8或RAD21L的功能,以及唯一的减数分裂特异的SMC蛋白SMC1β,我们生成了Smc1β〜(-/-)Rec8〜(-/-)和Smc1β〜(--/ -)Rad21L〜(-/-)小鼠突变体。对精母细胞染色体的分析表明,除了SMC1β复合物外,SMC1α/ RAD21和SMC1α/ REC8在较小程度上也有助于染色体轴长。去除SMC1β和RAD21L几乎完全废除了所有染色体轴。性染色体在单突变体或双突变体中不配对,并且在所有突变体中常染色体突触均受损。超分辨率显微镜检查显示,Smc1β〜(-/-)Rad21L〜(-/-)细胞中姐妹染色单体之间和单个染色单体上异常沉积了与突触相关的SYCP1。所有突变体均显示端粒长度减少和结构破坏,而野生型端粒则具有圆形TRF2结构,让人联想到t环。在leptonema /早期zygonema的两个双重突变体中,着丝粒的内聚力都没有损失,这表明,至少在突变体背景下,SMC1α/ RAD21复合体在这个早期提供了着丝粒的内聚力。因此,在前期早期,减数分裂特异性粘着蛋白最主要的作用是与轴相关的特征,例如轴的长度,突触和端粒的完整性,而不是着丝粒的内聚。作者摘要与具有两种不同黏附蛋白复合物的体细胞不同,在精母细胞中,至少有六种不同的黏附蛋白复合物形式,其协同功能鲜为人知。这项研究的重点是三种减数分裂特异性黏附素。减数分裂具有特定的染色体结构和动力学特征,并且我们揭示了减数分裂粘着蛋白复合物对染色体轴长度,着丝粒凝聚力,端粒完整性和突触的个别贡献。去除了唯一的减数分裂特异性SMC蛋白SMC1β,仅留下基于通用SMC1α的复合物。除SMC1β外,还消除了两个减数分裂特异的kleisins REC8或RAD21L中的一种,它们关闭了粘着素环状结构。将“双敲除”突变体与单“敲除”和野生型进行了比较。在所有突变体中,端粒和染色体突触均受到不同程度的损害。在早期的早期,减数分裂特异性黏着蛋白的主要作用是轴长和突触,而不是着丝粒黏着。去除SMC1β和RAD21L几乎完全废除了所有染色体轴。着丝粒内聚力最初是由SMC1α配合物提供的。在减数分裂的后期,SMC1β确保着丝粒凝聚,表明SMC1α的功能替代。因此,精细胞中不同的粘着蛋白复合物对这些细胞中的不同结构和过程有明显的贡献,但也存在一些功能冗余。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号