...
首页> 外文期刊>Stem Cell Reports >Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming
【24h】

Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming

机译:规范的MicroRNA活性促进,但对于转录因子介导的重编程可能是必需的

获取原文
           

摘要

Highlights ? Reprogramming may be initiated and maintained solely by transcription factors ? miRNA activity as a whole facilitates reprogramming ? Canonical miRNAs may be dispensable for reprogramming Summary MicroRNAs (miRNAs) are important regulators of reprogramming of somatic cells into induced pluripotent stem cells (iPSCs); however, it is unclear whether miRNAs are required for reprogramming and whether miRNA activity as a whole facilitates reprogramming. Here we report on successful reprogramming of mouse fibroblasts and neural stem cells (NSCs) lacking Dgcr8 , a factor required for the biogenesis of canonical miRNAs, by Yamanaka factors, albeit at decreased efficiencies. Though iPSCs derived from Dgcr8 -deficient mouse fibroblasts or NSCs were able to self-renew and expressed pluripotency-associated markers, they exhibited poor differentiation potential into mature somatic tissues, similar to Dgcr8 ?/? embryonic stem cells. The differentiation defects could be rescued with expression of DGCR8 cDNA. Our data demonstrate that while miRNA activity as a whole facilitates reprogramming, canonical miRNA may be dispensable in the derivation of iPSCs. prs.rt("abs_end"); Introduction MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that repress gene expression post-transcriptionally by destabilizing and/or repressing translation of target mRNAs. In the canonical biogenesis pathway, primary microRNA transcripts (pri-miRNAs) are processed in the nucleus by the microprocessor complex, which consists of the RNase III enzyme DROSHA and the double-stranded RNA-binding protein DGCR8, to generate ~70-nt precursor miRNAs (pre-miRNAs). The pre-miRNAs are then exported to the cytoplasm by EXPORTIN-5 and further processed by another RNase III enzyme, DICER, to generate ~22-nt mature miRNAs ( Figure?S1 ) ( Kim et?al., 2009 ). More than 400 miRNAs have been identified in the human ( Landgraf et?al., 2007 ), and up to 60% of all human genes may be regulated by miRNAs ( Friedman et?al., 2009 ). Given the potentially vast regulatory influence of miRNAs on gene expression and the critical roles of these molecules in embryo development ( Bartel, 2009 and Sun and Lai, 2013 ), it is not surprising that miRNAs have emerged as important regulators in reprogramming somatic cells into induced pluripotent stem cells (iPSCs). Together with the Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC) ( Takahashi and Yamanaka, 2006 ), co-expression of the miRNA cluster 302/367 or 106a/363; members of the miR-302, miR-294, or miR-181 family; or miR-93 and miR-106b greatly enhance iPSC derivation efficiency ( Judson et?al., 2013 , Li et?al., 2011 , Liao et?al., 2011 , Lin et?al., 2011 and Subramanyam et?al., 2011 ). Furthermore, expression of the miR-302/367 cluster or miR-200c, miR-302, and miR-369 without the Yamanaka factors is sufficient to reprogram human and mouse fibroblasts ( Anokye-Danso et?al., 2011 and Miyoshi et?al., 2011 ). How these miRNAs promote reprogramming is only partially understood. Several mechanisms have been proposed, such as acceleration of mesenchymal to epithelial transition and antagonism of the activities of let-7 family miRNAs, MBD2, NR2F2, and/or other reprogramming suppressors ( Hu et?al., 2013 , Judson et?al., 2013 , Lee et?al., 2013 , Liao et?al., 2011 and Melton et?al., 2010 ). In addition to the miRNAs that promote reprogramming, several miRNAs that inhibit reprogramming, such as the let-7 family members, have been reported ( Melton et?al., 2010 and Unternaehrer et?al., 2014 ). Therefore, it remains unclear whether miRNA activity as a whole facilitates reprogramming and whether miRNAs are required to convert somatic cells into iPSCs. Previous attempts to reprogram Dicer null mouse embryonic fibroblasts (MEFs) were unsuccessful ( Kim et?al., 2012 ); however, this observation cannot rule out a requirement of miRNAs in reprogramming because DICER is also critical for the biogenesis of several other small RNAs, such as endogenous small hairpin RNAs (shRNAs), mirtrons, and endogenous small interfering RNAs (siRNAs) ( Figure?S1 ) ( Babiarz et?al., 2008 ). In this study, we addressed the question of whether miRNAs are required for generating iPSC by reprogramming mouse cells that lack Dgcr8 , a factor required specifically for the biogenesis of canonical miRNAs ( Figure?S1 ), including all miRNAs implicated in reprogramming ( Babiarz et?al., 2008 , Judson et?al., 2013 and Wang et?al., 2007 ). We report that Dgcr8 -deficient fibroblasts and NSCs can be reprogrammed by the Yamanaka factors, albeit at decreased efficiencies. These results demonstrate that while canonical miRNAs as a whole facilitate reprogramming, they may be dispensable for the derivation of iPSCs. Results Reprogramming of Dgcr8 Δ/Δ MEFs and Tail Tip Fibroblasts To assess the requirement of miRNAs in iPSC derivation, we first tested whether Dgcr8 -deficient MEFs and tail tip fibroblasts (TTFs) could be reprogrammed by Yama
机译:强调 ?重编程可能仅由转录因子启动和维持吗?整个miRNA活性促进重编程?规范的miRNA可能对于重编程是必不可少的。总结MicroRNA(miRNA)是将体细胞重编程为诱导性多能干细胞(iPSC)的重要调节剂。然而,目前尚不清楚是否需要重新编程的miRNA,以及miRNA的整体活性是否有助于重新编程。在这里,我们报道了Yamanaka因子成功缺失Dgcr8的小鼠成纤维细胞和神经干细胞(NSCs)的成功重编程,该因子是Yamanaka因子产生的典型miRNA的生物发生所必需的因子,尽管效率降低。尽管衍生自Dgcr8缺陷的小鼠成纤维细胞或NSC的iPSC能够自我更新并表达多能性相关标记,但与Dgcr8 ?/?胚胎干细胞相似,它们向成熟的体细胞组织显示出较弱的分化潜能。 。 DGCR8 cDNA的表达可以挽救分化的缺陷。我们的数据表明,虽然总体上miRNA活性有助于重编程,但在iPSC的衍生过程中规范的miRNA可能是可有可无的。 prs.rt(“ abs_end”);简介MicroRNA(miRNA)是短的,内源性的非编码RNA,可通过破坏目标mRNA的稳定性和/或抑制其翻译来抑制转录后的基因表达。在经典的生物发生途径中,由RNase III酶DROSHA和双链RNA结合蛋白DGCR8组成的微处理器复合体在细胞核中处理初级microRNA转录物(pri-miRNA),生成约70 nt的前体miRNA(pre-miRNA)。然后,pre-miRNA通过EXPORTIN-5输出到细胞质中,并被另一种RNase III酶DICER进一步加工,生成约22nt的成熟miRNA(图?S1)(Kim等,2009)。在人类中已经鉴定出400多种miRNA(Landgraf等,2007),并且多达60%的人类基因可能受miRNA调控(Friedman等,2009)。鉴于miRNA对基因表达的潜在巨大调控影响以及这些分子在胚胎发育中的关键作用(Bartel,2009; Sun和Lai,2013),毫不奇怪,miRNA已成为将体细胞重编程为诱导型的重要调控因子。多能干细胞(iPSC)。与Yamanaka因子(OCT4,SOX2,KLF4和c-MYC)一起(Takahashi和Yamanaka,2006年),共同表达miRNA簇302/367或106a / 363。 miR-302,miR-294或miR-181家族的成员;或miR-93和miR-106b极大地增强了iPSC的衍生效率(Judson等,2013; Li等,2011;廖等,2011; Lin等,2011; Subramanyam等) 。,2011)。此外,没有Yamanaka因子的miR-302 / 367簇或miR-200c,miR-302和miR-369的表达足以重编程人和小鼠的成纤维细胞(Anokye-Danso等人,2011年; Miyoshi等人?等人,2011年)。这些miRNA如何促进重编程只是部分了解。已经提出了几种机制,例如加速间充质向上皮的转化以及对let-7家族miRNA,MBD2,NR2F2和/或其他重编程抑制因子的活性的拮抗作用(Hu等,2013; Judson等。 ,2013年,Lee等人,2013年,Liao等人,2011年和Melton等人,2010年)。除了促进重编程的miRNA,还报道了几种抑制重编程的miRNA,如let-7家族成员(Melton等,2010; Unternaehrer等,2014)。因此,目前尚不清楚miRNA的整体活性是否有助于重编程,以及是否需要miRNA才能将体细胞转化为iPSC。先前对Dicer null小鼠胚胎成纤维细胞(MEF)进行重新编程的尝试均未成功(Kim等人,2012年);但是,这种观察不能排除重编程中需要miRNA,因为DICER对于其他几种小RNA的生物发生也至关重要,例如内源性小发夹RNA(shRNA),mirtrons和内源性小干扰RNA(siRNA)(图? S1)(Babiarz et al。,2008)。在这项研究中,我们通过重新编程缺少Dgcr8的小鼠细胞来解决是否生成iPSC需要miRNA的问题,Dgcr8是规范性miRNA的生物合成所特有的因子(图?S1),包括与重编程有关的所有miRNA(Babiarz等。等人,2008,Judson等人,2013和Wang等人,2007)。我们报告说,尽管效率降低,但可以由Yamanaka因素对Dgcr8缺乏的成纤维细胞和NSC进行重新编程。这些结果表明,尽管规范的miRNA整体上促进了重新编程,但它们可能对于iPSC的衍生是不可或缺的。结果Dgcr8 Δ/Δ MEF和尾尖成纤维细胞的重编程为了评估iPSC衍生中miRNA的需求,我们首先测试了Yamag是否可以对Dgcr8缺失的MEF和尾尖成纤维细胞(TTF)进行重编程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号