首页> 外文期刊>Open Access Library Journal >Effect of Implant Diameter and Length on Stress Distribution for Titanium and Zirconia Implants by Using Finite Element Analysis (FEA)
【24h】

Effect of Implant Diameter and Length on Stress Distribution for Titanium and Zirconia Implants by Using Finite Element Analysis (FEA)

机译:种植体直径和长度对钛和氧化锆种植体应力分布的有限元分析(FEA)

获取原文
           

摘要

Purpose: The purpose of this study was to analyze stress distribution patterns in implant restorations created in different length and diameter made of titanium and zirconia by using three dimensional finite element analysis (FEM) with straight and 15° angled abutment. Materials and Methods: For titanium models; Ti-6Al-4V for implant fixture, connection element and abutments (straight and 15° angled abutment), yttrium tetragonal zirconium polycrystal (Y-TZP) for zirconium framework, Felds phatic porcelain for superstructure material and for zirconia models; Y-TZP for implant fixture, connection element, abutments (straight and 15° angled abutment) and zirconium framework, Felds phatic porcelain for superstructure material were used. The implants and their superstructures were modeled using CAD software Creo Elements-Pro5.0 and the mandibula was modeled using MIMICS 13.1 software. Optimum finite element modelled was obtained using 3-matic segmentation of MIMICS. The solid models of mandibular incisors were transferred to mesh model in FEM (ANSYS/Workbench 12.1) to analyze. The models simulated implants were placed in vertical position in the lost incisor of anterior mandible. First model simulated the titanium and zirconia implants with a diameter of 3.8 mm and lengths of 9.0 mm, 10.5 mm, 12.0 mm and 15.0 mm for each model. Second model simulated titanium and zirconia implants with a diameter of 4.6 mm and lengths of 9.0 mm, 10.5 mm, 12.0 mm and 15.0 mm for each model. Third model simulated titanium and zirconia implants with a diameter of 5.8 mm and lengths of 9.0 mm, 10.5 mm, 12.0 mm and 15.0 mm for each model. This process was repeated for implants with 15°?angled abutment. Loading of implants, respectively in an axial, a lingual and a mesiodistal direction with average masticatory forces of 114.6 N, 17.1 N and 23.4 N simulated in an oblique direction. The values of equivalent Von Mises Stress at the implant-bone interface were calculated for all variations using finite element analysis. Results: A comparison between titanium and zirconium implants with maximum stress for implants of the same length but different diameters, same diameters with different lengths and straight and 15° angled abutment showed nearly similar variances. Conclusion: With in the limitations of this study, increasing implant diameter is better than decreasing implant diameter both for titanium and zirconium models but raising implant length is worse than decreasing implant length with applied masticatory forces.
机译:目的:本研究的目的是通过使用直角和15°角基台的三维有限元分析(FEM),分析由钛和氧化锆制成的不同长度和直径的种植体修复物中的应力分布模式。材料和方法:用于钛制模型; Ti-6Al-4V用于植入物固定装置,连接元件和基台(直和15°角基台),钇锆方形多晶锆多晶(Y-TZP),用于上层建筑材料和氧化锆模型的费德斯相瓷; Y-TZP用于植入物固定装置,连接元件,基台(直的和15°角基台)和锆框架,采用Felds相晶瓷作为上层建筑材料。使用CAD软件Creo Elements-Pro5.0对植入物及其上部结构进行建模,并使用MIMICS 13.1软件对下颌进行建模。使用MIMICS的3-matic分割获得了最佳的有限元模型。将下颌切牙的实体模型转换为FEM(ANSYS / Workbench 12.1)中的网格模型进行分析。将模型模拟的植入物垂直放置在前下颌丢失的门牙中。第一个模型模拟了每个模型的直径为3.8 mm,长度为9.0 mm,10.5 mm,12.0 mm和15.0 mm的钛和氧化锆植入物。第二个模型模拟了每个模型的直径为4.6 mm,长度为9.0 mm,10.5 mm,12.0 mm和15.0 mm的钛和氧化锆植入物。第三个模型模拟了直径为5.8 mm,长度分别为9.0 mm,10.5 mm,12.0 mm和15.0 mm的钛和氧化锆植入物。对于具有15°斜基台的植入物,重复此过程。分别沿轴向,舌侧和近中颌方向加载植入物,在倾斜方向模拟的平均咀嚼力分别为114.6 N,17.1 N和23.4N。使用有限元分析针对所有变化计算出种植体-骨界面处的等效冯·米塞斯应力值。结果:对于长度相同但直径不同,直径相同但长度不同以及直基台和15°角基台的种植体,最大应力的钛和锆种植体之间的比较显示出几乎相似的变化。结论:在本研究的局限性下,对于钛和锆模型,增加植入物直径要好于减小植入物直径,但在施加咀嚼力的情况下,增加植入物长度要比减小植入物长度差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号