首页> 外文期刊>Oeno One >Ultrastructural leaf features of grapevine cultivars ( Vitis vinifera L. ssp. vinifera )
【24h】

Ultrastructural leaf features of grapevine cultivars ( Vitis vinifera L. ssp. vinifera )

机译:葡萄品种(Vitis vinifera L. ssp。vinifera)的超微结构叶特征。

获取原文
           

摘要

Aim: To investigate and compare of Vitis vinifera Linné subsp. vinifera leaves of cultivars important for the Austrian wine producers in order to learn more about their surface architectures in the microand nanoscale.Methods and results: Atomic force microscopy, binocular fluorescence microscopy, contact angle measurements, and environmental scanning electron microscopy were employed in order to assess physicochemical features of fresh plant material. Erect and prostrate trichomes are the most characteristic features present on the epidermal surfaces of grapevine leaves. These hairs occur in rather different densities from none to densely covering the whole surface. Contact angels are highly affected by these hairs, resulting in individual cases in values >150° in the presence of a high reclining hair density. On nanoscopic scale blades of the varieties differ with respect to their wax structures, in orientation, shape and size. Cuticular striae and epicuticular waxes, mostly granules and platelets, are the most conspicuous characteristics of grapevine leaf ultrastructure.Conclusion: The microscopy techniques applied are complementary, enabling morphological analysis at different scales. They are not only efficient tools for descriptive botanics and finding morphological adaptions to the environmental conditions, they provide also an insight into the habitat of leaf colonizing microbes, pathogenic as well as beneficial ones and may add to the understanding of the conditions they find on leaf surfaces.Significance and impact of the study: Leaf surface structures and chemicals are part of the defence system of the plant. Water-repellency can be advantageous for the plant as it creates unfavourable conditions for the successful colonization of pathogens. The knowledge of wetting properties of leaf surfaces will advance the insight in the interaction with additives, promoting the secure and optimal use of plant protection agents applied by spray deposition, especially under difficult weather conditions. The application of such research will be better contact and or penetration, better adhesion of pesticides and other plant protecting agents but also improved adhesion of plant promoting bacteria in biocontrol applications. 1. Introduction The cuticle forms the multifunctional interface of plant and environment. Most prominently, it is a transpiration barrier, but it also controls leaf carbon balance, solute loss and uptake. Physiology, morphology and density of grapevine stomata have been investigated with respect to water stress (Costa et al., 2012), soil temperatures and atmospheric carbon dioxide (Rogiers et al., 2011) and wind (Gokbayrak et al., 2008). But leaf surfaces are also habitats for a great variety of different organisms, including lichens, bryophytes, algae, fungi, cyanobacteria, yeasts and other microorganisms as well as small animals (Ruinen, 1961). Bacteria are representing the biggest group among them. Highly important for agricultural species, the cuticle works as the first contact point and barrier against pathogenic fungi (Mendoza-Mendoza et al., 2009), viruses (Khan et al., 2011), and bacteria (Marcell and Beattie, 2002), and it is responsible for host recognition by fungi as well as herbivorous insects (Powell et al., 1999) and their predators. Adhesion of bacteria and fungal spores relates to the physicochemical features of the cuticle and hence investigations of these are a highly significant topic for agricultural research. Thickness, structure and chemical composition of cuticular matrices and epicuticular and intracuticular waxes vary widely (Riederer and Schreiber, 2001; Koch et al., 2004). The different shapes of the wax crystals are determined by their chemistry, i.e., certain crystal types are formed by specific compounds (Koch et al., 2006). Barthlott et al. (1998) identified 23 types of epicuticular wax deposits and assigned to them high systematic significance mainly for higher taxonomic levels. The potential functional consequences of such differences are still poorly understood (Kerstiens, 2010). Fungal spores usually need free water or a relative humidity of 95% to germinate. Many fungi infect leaves via an infection drop - a drop of rainwater or dew (Blakeman, 1973). Thus water-repellency is advantageous for the plant as it creates unfavourable conditions for the successful colonization of pathogens and parasitic fungi (Bargel et al., 2006). Some pathogens are able to overcome the barrier of a leaf covered with epicuticular wax structures making it highly hydrophobic. Powdery mildews, for example, contain a small amount of water within their conidia which enables them to germinate on virtually dry surfaces (Barthlott and Neinhuis, 1997). Monteiro et al. (2013) and Santos et al. (2014) studied epidermis, stomata, hair distribution and mesophyll structure, finding significant differences between four red and four white grapevine cultivars from Portugal. Investigations on the
机译:目的:调查和比较葡萄(Vitis viniferaLinné)亚种。葡萄叶片对奥地利葡萄酒生产者具有重要意义,以便在微米和纳米尺度上了解其表面结构。方法和结果:为了进行分析,采用了原子力显微镜,双目荧光显微镜,接触角测量和环境扫描电子显微镜。评估新鲜植物材料的理化特性。直立和strate毛是葡萄叶表皮表面上存在的最典型特征。这些毛发的密度从完全不同到密集地覆盖整个表面。接触天使会受到这些头发的极大影响,在个别情况下,在具有高倾斜头发密度的情况下,其值> 150°。在纳米尺度上,该品种的叶片的蜡结构在取向,形状和大小方面有所不同。表皮纹和表皮蜡(主要是颗粒和血小板)是葡萄叶片超微结构最明显的特征。结论:所用的显微镜​​技术是互补的,可以进行不同规模的形态分析。它们不仅是用于描述植物的有效工具,并且可以发现对环境条件的形态适应性,而且还可以深入了解叶片定殖微生物,病原菌和有益菌的生境,并且可以加深对它们在叶片上发现条件的了解。研究的意义和影响:叶片表面结构和化学物质是植物防御系统的一部分。疏水性对于植物可能是有利的,因为它为病原体的成功定殖创造了不利条件。叶片表面的润湿特性的知识将促进与添加剂相互作用的洞察力,从而促进安全,最佳地使用通过喷雾沉积施用的植物保护剂,特别是在恶劣的天气条件下。此类研究的应用将是更好的接触和/或渗透,农药和其他植物保护剂的更好附着力,以及在生物防治应用中提高植物促进细菌的附着力。 1.简介角质层形成植物和环境的多功能接口。最显着的是,它是一种蒸腾屏障,但它也控制了叶片碳平衡,溶质损失和吸收。已经针对水分胁迫(Costa等人,2012),土壤温度和大气二氧化碳(Rogiers等人,2011)和风(Gokbayrak等人,2008)进行了葡萄气孔的生理,形态和密度研究。但是叶的表面还是许多不同生物的栖息地,包括地衣,苔藓植物,藻类,真菌,蓝细菌,酵母和其他微生物以及小型动物(Ruinen,1961)。细菌是其中最大的群体。对于农业物种而言,表皮非常重要,它是抵御病原真菌(Mendoza-Mendoza等,2009),病毒(Khan等,2011)和细菌(Marcell和Beattie,2002)的第一个接触点和屏障,它负责真菌,草食性昆虫(Powell等,1999)及其天敌的宿主识别。细菌和真菌孢子的粘附与角质层的物理化学特征有关,因此对这些物质的研究是农业研究的重要课题。表皮基质以及表皮和表皮内蜡的厚度,结构和化学组成差异很大(Riederer和Schreiber,2001; Koch等,2004)。蜡晶体的不同形状取决于其化学性质,即某些晶体类型是由特定化合物形成的(Koch等,2006)。 Barthlott等。 (1998年)确定了23种表皮蜡质沉积物,并赋予它们较高的系统意义,主要是针对较高的分类学水平。这种差异的潜在功能后果仍然知之甚少(Kerstiens,2010年)。真菌孢子通常需要自由水或95%的相对湿度才能发芽。许多真菌通过感染滴(一滴雨水或露水)感染叶子(Blakeman,1973)。因此,疏水性对植物是有利的,因为它为病原体和寄生真菌的成功定殖创造了不利条件(Bargel等,2006)。一些病原体能够克服被表皮蜡结构覆盖的叶子的屏障,使其具有高度疏水性。例如,白粉病的分生孢子中含有少量水分,这使它们能够在几乎干燥的表面上发芽(Barthlott和Neinhuis,1997)。 Monteiro等。 (2013)和Santos等人。 (2014)研究了表皮,气孔,毛发分布和叶肉结构,发现葡萄牙的四个红色和四个白色葡萄品种之间存在显着差异。有关的调查

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号