首页> 外文期刊>Oeno One >Effects of salinity on leaf mineral composition and salt injury symptoms of some Iranian wild grapevine ( Vitis vinifera L. ssp. sylvestris) genotypes
【24h】

Effects of salinity on leaf mineral composition and salt injury symptoms of some Iranian wild grapevine ( Vitis vinifera L. ssp. sylvestris) genotypes

机译:盐度对一些伊朗野生葡萄(葡萄)基因型叶片矿物质组成和盐伤害症状的影响

获取原文
           

摘要

Aim: To evaluate the suitability of wild grapevine genotypes to saline conditions by measuring leaf ion content and salt injury symptoms.Methods and results: Vines of nine wild (Vitis vinifera L. ssp. sylvestris) genotypes were planted in pots and after the good establishment, salinity treatments (0, 50, 100 and 150 mM NaCl) started. At the end of the experimental period, the K+, Na+, NO3- and Cl- content of leaves and visible symptoms of salt injury were recorded. Leaf Na+ and Cl- content increased with increasing salinity but levels and accumulation rates were different among genotypes.Conclusion: Based on Na+ and Cl- content and salt symptoms, genotypes 4 and 7 showed less symptoms than the other genotypes at moderate (50-100 mM) NaCl concentration and none could tolerate high salt (150 mM) concentration.Significance and impact of the study: Under saline conditions, ion accumulation in the leaves significantly varied among wild genotypes and some of them could be recommended as saline tolerant genotypes. IntroductionAccumulation of Cl- and Na+ in grapevines in saline condition may result in physiological disturbances leading to reductions in growth, vegetative biomass, and fruit yield (Walker et al., 2010). The specific ion toxicity occurs when the vines accumulate certain ions at levels above those known to cause detrimental effects. Grapevines are considered moderately sensitive to root-zone salinity and it has long been known that variation in salt tolerance exists between grapevine species and cultivars (Fisarakis et al., 2001). Several studies revealed that salt tolerance mechanisms in grapevine involve many factors like restriction of ion absorption, translocation from roots to shoots, photosynthesis alteration and solute accumulation (Shani and Ben-Gal, 2005; Walker et al., 2010). Some of the grapevine rootstocks have been rated as tolerant to salinity due to their ability to prevent Na+ and/or Cl- uptake and translocation to aerial parts of the vines (Tregeagle et al., 2006). When used as a grapevine rootstock, 140 Ruggeri (Vitis berlandieri × Vitis rupestris) is known to be a good Cl- excluder, whereas K 51-40 (Vitis champinii × Vitis riparia 'Gloire') is a poor excluder and scions grafted to it accumulate high concentrations of Cl- when grown under saline conditions (Walker et al., 2010). One of the strategies adopted in overcoming salinity is the use of tolerant genotypes through the characterization of local genetic resources and the selection of potential tolerant genotypes (Fisarakis et al., 2001). In Iran, wild grapevine (Vitis vinifera ssp. sylvestris) populations are generally found in riparian woodland habitats in the Alborz and Zagros Mountains in the north and north-west of the country (Doulati Baneh et al., 2011). The availability of these genotypes provides an excellent opportunity to determine their suitability to saline conditions. So the aim of this study was to evaluate the tolerance of nine wild grapevine genotypes to salt stress, with an emphasis on ion (Na+, K+, Cl-, NO3-) accumulation and interaction in leaves.Materials and methodsVines of nine wild grapevine genotypes were planted in pots containing a mixture of soil (fine loamy, super active, mixed, mesic typic calcixerepts) and sand (1:1 v/v). They were grown for 40 days and after good plant establishment (8 cm green shoot growth, 5 young leaves), salinity treatments started. The experimental design was a Factorial Complete Randomized Block design with two factors (salinity at 0, 50, 100 and 150 mM NaCl and genotype including 9 wild grapevines). This experiment was carried out at the Agricultural and Natural Resource Research Center of West Azerbaijan-Iran. At the end of the experimental period, the concentration of K+, Na+, NO3- and Cl- in leaves was measured and visible symptoms of salt injury in vines scored as: 1- plants with no necrotic tissues; 2- necrosis on 30% of blade and on the tip of the leaves; 3- necrosis on 50% of the leaves and on the stem; 4- necrosis on 60-80% of the leaves and on the stem; and 5- necrosis leading to the death of the plant. Analysis of variance (two way ANOVA) was done using SAS 9.1 software and differences among means were compared by Duncan’s Multiple Range Test at PPTable 1. Analysis of variance on different characters affected by salinity and genotype.View popupExpand inlineCollapse inlineS.O.Vd.fMeans of SquareaNa+K+Cl-NO3-Salt InjuryBlock230.932.2345.132.220.07**Salinity (S)31006.00**12.47**1658.75**161.97**7.73**Genotype (G)842.47**1.54**67.11**61.66**0.32**S×G2410.24**0.82**14.63**12.04**0.10**Error703.010.353.232.540.02C.V (%)7.0710.346.5113.168.62S.O.V., Source of variance; d.f., degree of freedom; ** Significant differences at P≤ 0.01; a. Table 2. Percentage of Explained Variance.View popupExpand inlineCollapse inlineS.O.VPercentage of Explained Variance (PEV)Na+K+Cl-???? NO3-Salt InjurySalinity (S)77.83880.516.178.1Genotype (G)8.712.58.742.98.6S×G6.3205.6825.18S.O.V., Source
机译:目的:通过测量叶片离子含量和盐分损伤症状,评估野生葡萄基因型对盐分条件的适应性。方法与结果:将9个野生基因型葡萄(Vitis vinifera L. ssp。sylvestris)的葡萄种植在盆中,并在良好种植后种植,开始了盐度处理(0、50、100和150 mM NaCl)。试验结束时,记录叶片的K +,Na +,NO3-和Cl-含量以及可见的盐渍症状。结论:根据Na +和Cl-含量及盐分症状,基因型4和7在中等(50-100)下表现出比其他基因型少的症状。根据盐度的增加,叶片Na +和Cl-的含量随盐分的增加而增加。 (mM)NaCl浓度,没有一个能耐受高盐(150 mM)浓度。研究的意义和影响:在盐分条件下,野生基因型中叶片中的离子积累差异显着,其中一些可能被推荐为耐盐性基因型。简介盐分条件下葡萄藤中Cl-和Na +的积累可能会导致生理干扰,从而导致生长,营养生物量和水果产量下降(Walker等人,2010)。当葡萄树中某些离子的积累水平超过已知的有害影响水平时,就会发生特定的离子毒性。葡萄被认为对根区盐度中等敏感,早就知道葡萄品种与品种之间的耐盐性存在差异(Fisarakis等,2001)。多项研究表明,葡萄的耐盐性机制涉及许多因素,例如离子吸收的限制,从根到芽的易位,光合作用的改变和溶质的积累(Shani和Ben-Gal,2005; Walker等人,2010)。一些葡萄砧木由于能够防止Na +和/或Cl-吸收并转移到葡萄的地上部分而被评为耐盐碱(Tregeagle等,2006)。当用作葡萄砧木时,已知140 Ruggeri(葡萄)×鲁氏葡萄)是良好的Cl-排斥剂,而K 51-40(葡萄球菌×riparia'Gloire')是较差的排斥剂,接枝有接穗在盐水条件下生长时会积累高浓度的Cl-(Walker等人,2010年)。克服盐碱化的策略之一是通过表征当地遗传资源和选择潜在的耐性基因型来利用耐性基因型(Fisarakis等,2001)。在伊朗,野生葡萄(Vitis vinifera ssp。sylvestris)种群通常在该国北部和西北部的Alborz和Zagros山的河岸林地栖息地中发现(Doulati Baneh等人,2011)。这些基因型的可利用性提供了一个极好的机会来确定它们对盐水条件的适应性。因此,本研究的目的是评估9种野生葡萄基因型对盐胁迫的耐受性,重点是叶片中离子(Na +,K +,Cl-,NO3-)的积累和相互作用。材料和方法9种野生葡萄基因型的葡萄将其种植在含有土壤(细壤土,高活性,混合,中性典型钙磷素)和沙子(1:1 v / v)的混合物的盆中。它们生长了40天,并在良好的植株生长(8厘米绿苗生长,5片幼叶)后开始了盐度处理。实验设计是具有两个因子的因子分解完全随机区组设计(盐度分别为0、50、100和150 mM NaCl,基因型包括9个野生葡萄树)。该实验在西阿塞拜疆-伊朗的农业和自然资源研究中心进行。在实验结束时,测量了叶片中K +,Na +,NO3-和Cl-的浓度,并在葡萄树上发现了可见的盐害症状:-1-没有坏死组织的植物; 2-30%的叶片和叶尖坏死; 3-50%的叶子和茎坏死; 4- 60-80%的叶子和茎上坏死;和5-坏死导致植物死亡。使用SAS 9.1软件进行方差分析(双向方差分析),并通过PP表1的邓肯多范围检验比较均值之间的差异。受盐度和基因型影响的不同字符的方差分析。查看popupExpand inlineCollapse inlineS.O.Vd。 f均方根+ K + Cl-NO3-盐伤害的区域Block230.932.2345.132.220.07 **盐度(S)31006.00 ** 12.47 ** 1658.75 ** 161.97 ** 7.73 **基因型(G)842.47 ** 1.54 ** 67.11 ** 61.66 ** 0.32 ** S×G2410.24 ** 0.82 ** 14.63 ** 12.04 ** 0.10 ** Error703.010.353.232.540.02C.V(%)7.0710.346.5113.168.62SOV,方差来源; d.f.自由度; ** P≤0.01时有显着差异;一种。表2.解释方差的百分比.view popupExpand inlineCollapse inlineS.O.VP解释方差的百分比(PEV)Na + K + Cl-???? NO3-盐伤害盐度(S)77.83880.516.178.1基因型(G)8.712.58.742.98.6S×G6.3205.6825.18S.O.V。,来源

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号