...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate
【24h】

Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate

机译:时空控制的细胞粘附:向操纵细胞功能和命运的可编程平台。

获取原文
           

摘要

Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signalling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e. substrates exhibiting signals whose configuration is time-invariant. However, cells in vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behaviour. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatiotemporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
机译:材料表面的生物物理和生化信号有效调节细胞功能和命运。特别地,在称为机械转导的过程中,粘附信号的微米和纳米级模式可以精细引发并影响大量最终影响基因表达的信号传导途径。我们对细胞-材料信号相互作用和反应的基本理解是基于静态培养平台,即底物所显示的信号的配置是时不变的。但是,体内细胞会暴露于随时间和空间变化的一系列生物物理和生化信号中,而细胞整合这些信号的方式最终可能决定其行为。随着制造技术和材料工程学的进步,最近开发的培养平台能够显示生物化学和生物物理信号的模式,其特征会根据外部刺激并根据选定的程序在时间和空间上发生变化。这些动态装置被证明对揭示细胞如何适应动态微环境或整合信号的时空变化特别有用。在这项工作中,我们在控制细胞功能和体外命运的动态平台的背景下提出了最相关的发现。我们将重点放在与制造显示微米和纳米级动态信号的平台有关的技术方面,以及对激活信号模式的时空变化所必需的物理化学刺激上。特别地,我们说明了用动态配体及其图案,地形起伏和机械性能来编码材料表面的策略。此外,我们提出了最有效但仍与细胞相容的方法来激活信号的时空变化。我们专注于细胞反应和对信号呈现动态变化的响应。最后,介绍了新一代培养系统在体外和体内的潜在应用,包括再生医学和细胞调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号