...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation Is Essential for Functional Regeneration
【24h】

Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation Is Essential for Functional Regeneration

机译:脊髓病变培养模型中的胚胎细胞移植:神经元中继形成对于功能再生至关重要。

获取原文
           

摘要

Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits. We tested the two hypotheses in an in vitro SC lesion model that is based on propagation of activity between two rat organotypic SC slices in culture. Transplantation of dissociated cells from E14 rat SC or forebrain (FB) re-established the relay of activity over the lesion site and thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays (MEAs) we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse FB cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated SC circuits. In contrast, transplantation of neurospheres (NS) induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated SC circuits.
机译:目前尚无治愈脊髓损伤(SCI)的方法。但是,将胚胎组织移植到脊髓(SC)病变中会导致轴突在整个病变部位长出并恢复某些功能,这为将来的干细胞疗法带来了希望。尽管给出了体内功能恢复的证据,但移植支持物的确切细胞机制仍然难以捉摸:要么移植的细胞为宿主组织提供了一个允许自身再生的环境,要么移植物实际上在功能上整合到了宿主神经元网络中,从而重新连接了分离的细胞SC电路。我们在体外SC损伤模型中测试了这两个假设,该模型基于培养中两个大鼠器官型SC切片之间活性的传播。从E14大鼠SC或前脑(FB)分离的细胞的移植重建了病变部位的活性,从而促进了功能的再生。我们将来自移植细胞的膜片钳记录与来自宿主组织在多电极阵列(MEA)上的网络活动测量结果相结合,我们在这里显示出神经元与移植细胞不同并整合到宿主电路中。从移植的胚胎小鼠FB细胞发育而来的神经元的光遗传沉默提供了明确的证据,表明它们取代了丢失的神经元连接,从而在分离的SC回路之间传递和同步活动。相比之下,神经球(NS)的移植既不会诱导来自移植物的成熟神经元的分化,也不会诱导功能再生的改善。这些发现共同表明,从移植的胚胎细胞形成神经元中继对于重新连接分离的SC回路至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号