...
首页> 外文期刊>Energies >Extended Kalman Filter-Based State of Charge and State of Power Estimation Algorithm for Unmanned Aerial Vehicle Li-Po Battery Packs
【24h】

Extended Kalman Filter-Based State of Charge and State of Power Estimation Algorithm for Unmanned Aerial Vehicle Li-Po Battery Packs

机译:基于扩展卡尔曼滤波器的充电状态和功率估计算法的无人机锂电池组

获取原文
           

摘要

Customer requirements for unmanned aerial vehicles (UAVs) with long flight times are increasing exponentially in the personal, commercial, and military use areas. Due to their limited payload, large numbers of on-board battery packs cannot be used and this is the main reason behind the need for battery management software (BMS) packages with state of charge (SOC) estimation functions to increase the flight time. At the same time, as the UAV application range has extended widely, the size of UAVs has increased and heavy-duty UAVs are slowly appearing. As a result, the system operating power of the UAVs has been increased tremendously and their safe system power operation has become an issue. This is the main reason for the need of BMS having state of power (SOP) estimation functions. In this work a 6 S Li-Po battery pack is simulated with two ladder equivalent circuit models (ECMs) considering an impedance effect whose parameters are found using hybrid pulse power characterization (HPPC) current patterns with parameter determination using the table-based linear interpolation (TBLI) method. Two state estimation methods, including the current integration method and the extended Kalman filter (EKF) method are developed and the estimation accuracies of SOC and SOP are compared. Results show that the most accurate SOC estimation turns out to be 0.1477% (indoor test with HPPC), 0.1324% (outdoor test with 0 kg payload), and 0.2021% (outdoor test with 10 kg payload). Also, the most accurate SOP estimation error turns out to be 1.2% (indoor test with HPPC), 3.6% (outdoor test with 0 kg payload), and 4.2% (outdoor test with 10 kg payload).
机译:在个人,商业和军事用途领域,长飞行时间的无人机对客户的需求正呈指数级增长。由于有效载荷有限,因此无法使用大量机载电池组,这是需要具有充电状态(SOC)估计功能的电池管理软件(BMS)软件包以增加飞行时间的主要原因。同时,随着无人机的应用范围广泛扩展,无人机的尺寸增加,重型无人机逐渐出现。结果,无人飞行器的系统操作功率已大大增加,并且其安全的系统功率操作已成为问题。这是需要具有电源状态(SOP)估计功能的BMS的主要原因。在这项工作中,使用两个梯形等效电路模型(ECM)考虑了阻抗效应,对6 S锂电池组进行了仿真,该模型的参数是使用混合脉冲功率表征(HPPC)电流模式找到的,并使用基于表格的线性插值确定(TBLI)方法。开发了两种状态估计方法,包括电流积分方法和扩展卡尔曼滤波器(EKF)方法,并比较了SOC和SOP的估计精度。结果表明,最准确的SOC估计值是0.1477%(使用HPPC进行的室内测试),0.1324%(使用0千克有效负载的室外测试)和0.2021%(使用10 kg有效负载的室外测试)。而且,最准确的SOP估计误差为1.2%(使用HPPC进行的室内测试),3.6%(使用0千克有效负载的室外测试)和4.2%(使用10千克有效负载的室外测试)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号