首页> 外文期刊>American Journal of Computational Mathematics >Optimizing Time-Spectral Solution of Initial-Value Problems
【24h】

Optimizing Time-Spectral Solution of Initial-Value Problems

机译:优化初值问题的时光谱解决方案

获取原文
           

摘要

Time-spectral solution of ordinary and partial differential equations is often regarded as an inefficient approach. The associated extension of the time domain, as compared to finite difference methods, is believed to result in uncomfortably many numerical operations and high memory requirements. It is shown in this work that performance is substantially enhanced by the introduction of algorithms for temporal and spatial subdomains in combination with sparse matrix methods. The accuracy and efficiency of the recently developed time spectral, generalized weighted residual method (GWRM) >are> compared to that of the explicit Lax-Wendroff and implicit Crank-Nicolson methods. Three initial-value PDEs are employed as model problems; the 1D Burger equation, a forced 1D wave equation and a coupled system of 14 linearized ideal magnetohydrodynamic (MHD) equations. It is found that the GWRM is more efficient than the time-stepping methods at high accuracies. The advantageous scalings Nt1.0Ns1.43> >and Nt0.0Ns1.08> >were obtained for CPU time and memory requirements, respectively, with >>>N>t>> and >>>N>s>>> denoting the number of temporal and spatial subdomains. For time-averaged solution of the two-time-scales forced wave equation, GWRM performance exceeds that of the finite differenc>e methods by an order of magnitude both in terms of CPU time and memory requirement. Favorable subdomain scaling is demonstrated for the MHD equations, >indicating a potential for efficient solution of advanced initial-value problems in, for example, fluid mechanics and MHD.
机译:常态和偏微分方程的时频解通常被认为是一种低效的方法。与有限差分方法相比,时域的相关扩展被认为会导致许多数值运算和高存储需求。在这项工作中表明,通过结合稀疏矩阵方法引入用于时间和空间子域的算法,可以显着提高性能。与显式Lax-Wendroff方法和隐式Crank-Nicolson方法相比,最近开发的时间谱,广义加权残差法(GWRM) > >的准确性和效率更高。三个初始值PDE被用作模型问题。 1D Burger方程,1D强迫波方程和14个线性化理想磁流体动力学(MHD)方程的耦合系统。发现在高精度下,GWRM比时间步进方法更有效。有利的缩放比例 N t 1.0 N s 1.43 > >和 N t 0.0 N s 1.08 > >分别通过 > > > N > t > >和 > > > N > s < / span> > > >表示数量时间和空间子域。对于两个时间尺度的强制波动方程的时间平均解,GWRM性能在CPU时间和内存需求方面都比有限差分方法高出一个数量级。证明了MHD方程的有利子域缩放, >指出了有效解决高级初始值问题(例如流体力学和MHD)的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号