...
首页> 外文期刊>Chemical science >Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(ii) under high pressure
【24h】

Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(ii) under high pressure

机译:高压下探索三角双锥Ni(ii)的巨大磁各向异性的起源

获取原文
           

摘要

Understanding and controlling magnetic anisotropy at the level of a single metal ion is vital if the miniaturisation of data storage is to continue to evolve into transformative technologies. Magnetic anisotropy is essential for a molecule-based magnetic memory as it pins the magnetic moment of a metal ion along the easy axis. Devices will require deposition of magnetic molecules on surfaces, where changes in molecular structure can significantly alter magnetic properties. Furthermore, if we are to use coordination complexes with high magnetic anisotropy as building blocks for larger systems we need to know how magnetic anisotropy is affected by structural distortions. Here we study a trigonal bipyramidal nickel( II ) complex where a giant magnetic anisotropy of several hundred wavenumbers can be engineered. By using high pressure, we show how the magnetic anisotropy is strongly influenced by small structural distortions. Using a combination of high pressure X-ray diffraction, ab initio methods and high pressure magnetic measurements, we find that hydrostatic pressure lowers both the trigonal symmetry and axial anisotropy, while increasing the rhombic anisotropy. The ligand–metal–ligand angles in the equatorial plane are found to play a crucial role in tuning the energy separation between the d _( x ~(2) ? y ~(2) ) and d _( xy ) orbitals, which is the determining factor that controls the magnitude of the axial anisotropy. These results demonstrate that the combination of high pressure techniques with ab initio studies is a powerful tool that gives a unique insight into the design of systems that show giant magnetic anisotropy.
机译:如果要使数据存储的小型化继续发展成为变革性的技术,那么在单个金属离子水平上理解和控制磁各向异性至关重要。磁各向异性对于基于分子的磁存储至关重要,因为它会沿易轴固定金属离子的磁矩。设备将需要在表面沉积磁性分子,其中分子结构的变化会显着改变磁性。此外,如果我们要使用具有高磁各向异性的配位化合物作为大型系统的基础,我们需要知道磁各向异性如何受到结构变形的影响。在这里,我们研究了一个三角双锥体镍(II)配合物,其中可以设计出数百个波数的巨大磁各向异性。通过使用高压,我们显示出磁各向异性如何受到小的结构变形的强烈影响。结合使用高压X射线衍射,从头算方法和高压磁测量,我们发现静水压力降低了三角对称性和轴向各向异性,同时增加了菱形各向异性。发现在赤道平面内的配体-金属-配体角在调节d _(x〜(2)?y〜(2))和d _(xy)轨道之间的能量间隔方面起着至关重要的作用。控制轴向各向异性大小的决定因素。这些结果表明,将高压技术与从头算研究相结合是一种功能强大的工具,可为显示巨大磁各向异性的系统设计提供独特的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号