首页> 外文OA文献 >Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(II) under high pressure
【2h】

Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(II) under high pressure

机译:探讨高压下三角双锥体Ni(II)中巨磁各向异性的起源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding and controlling magnetic anisotropy at the level of a single metal ion is vital if the miniaturization of data storage is to continue to evolve into transformative technologies. Magnetic anisotropy is essential for a molecule-based magnetic memory as it pins the magnetic moment of a metal ion along the easy axis. Devices will require deposition of magnetic molecules on surfaces, where changes in molecular structure can significantly alter magnetic properties. Furthermore, if we are to use coordination complexes with high magnetic anisotropy as building blocks for larger systems we need to know how magnetic anisotropy is affected by structural distortions. Here we study a trigonal bipyramidal nickel(II) complex where a giant magnetic anisotropy of several hundred wavenumbers can be engineered. By using high pressure, we show how the magnetic anisotropy is strongly influenced by small structural distortions. Using a combination of high pressure X-ray diffraction, ab initio methods and high pressure magnetic measurements, we find that hydrostatic pressure lowers both the trigonal symmetry and axial anisotropy, while increasing the rhombic anisotropy. The ligand-metal-ligand angles in the equatorial plane are found to play a crucial role in tuning the energy separation between the dx2-y2 and dxy orbitals, which is the determining factor that controls the magnitude of the axial anisotropy. These results demonstrate that the combination of high pressure techniques with ab initio studies is a powerful tool that gives a unique insight into the design of systems that show giant magnetic anisotropy.
机译:如果要使数据存储的小型化继续发展成为变革性的技术,那么在单个金属离子水平上理解和控制磁各向异性至关重要。磁各向异性对于基于分子的磁存储至关重要,因为它会沿易轴固定金属离子的磁矩。设备将需要在表面上沉积磁性分子,其中分子结构的变化会大大改变磁性。此外,如果我们要使用具有高磁各向异性的配位化合物作为大型系统的基础,我们需要知道磁各向异性如何受到结构变形的影响。在这里,我们研究了三角双锥体镍(II)络合物,其中可以设计数百个波数的巨大磁各向异性。通过使用高压,我们显示出磁各向异性如何受到小的结构变形的强烈影响。结合使用高压X射线衍射,从头算方法和高压磁测量,我们发现静水压力降低了三角对称性和轴向各向异性,同时增加了菱形各向异性。发现在赤道平面中的配体-金属-配体角在调节dx2-y2和dxy轨道之间的能量间隔方面起着关键作用,这是控制轴向各向异性大小的决定因素。这些结果表明,将高压技术与从头算研究相结合是一种功能强大的工具,可为显示巨大磁各向异性的系统设计提供独特的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号