首页> 外文期刊>BMC Physiology >Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling
【24h】

Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling

机译:小鼠心肌细胞中兴奋-收缩偶联的调控:数学模型的综合分析

获取原文
           

摘要

Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective cellular physiology. We propose that integrative modelling as in the present work is a valuable complement to experiments in understanding the causality within complex biological systems such as cardiac myocytes.
机译:背景技术心肌细胞是固有复杂的生物系统的一个典型例子,该系统具有内部和交叉连接的信号反馈环,形成了细胞内稳态的基本特性。已经研究了细胞和组织的功能特性,例如。结合强大的基因工程工具,并结合大量的实验。尽管此方法提供了有关端点生理的准确信息,但补充方法(例如数学建模)可以提供有关导致端点表型的过程的更详细信息。结果为了获得正常心肌细胞中激发-收缩偶联的新机制信息并分析复杂的基因工程心脏模型,我们建立了小鼠心室肌细胞的数学模型。除了膜激发,钙信号传导和收缩的基本组成部分外,我们的集成模型还包括钙钙调蛋白依赖性酶的级联反应以及它对参与激发-收缩偶联蛋白的调控。使用该模型,我们研究了三种干扰钙信号传导的遗传修饰的作用:1)消融磷lamban,2)钙钙调蛋白依赖性激酶II(CaMK)破坏L型钙通道的调节,以及3) CaMK的过度表达。我们表明,实验表型的关键特征涉及生理补偿和自动调节机制,使系统在所有转基因模型中的状态更接近原始野生型表型。当基因修饰破坏调节信号系统本身时,即CaMK过表达模型时,发现了剧烈的表型。结论所提出的心肌细胞模型的新颖特征使得能够准确描述兴奋-收缩偶联。因此,该模型是正常和缺陷细胞生理学进一步研究的适用工具。我们建议,如本工作中的集成建模是对了解复杂生物系统(例如心肌细胞)内因果关系的实验的宝贵补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号