首页> 外文期刊>Beilstein Journal of Nanotechnology >Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies
【24h】

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

机译:Aβ42,Aβ40和α-突触核蛋白原纤维的机械和热力学性质:一种粗粒化方法以补充实验研究

获取原文
           

摘要

We perform molecular dynamics simulation on several relevant biological fibrils associated with neurodegenerative diseases such as Aβsub40/sub, Aβsub42/sub, and α-synuclein systems to obtain a molecular understanding and interpretation of nanomechanical characterization experiments. The computational method is versatile and addresses a new subarea within the mechanical characterization of heterogeneous soft materials. We investigate both the elastic and thermodynamic properties of the biological fibrils in order to substantiate experimental nanomechanical characterization techniques that are quickly developing and reaching dynamic imaging with video rate capabilities. The computational method qualitatively reproduces results of experiments with biological fibrils, validating its use in extrapolation to macroscopic material properties. Our computational techniques can be used for the co-design of new experiments aiming to unveil nanomechanical properties of biological fibrils from a point of view of molecular understanding. Our approach allows a comparison of diverse elastic properties based on different deformations , i.e., tensile (YsubL/sub), shear (S), and indentation (YsubT/sub) deformation. From our analysis, we find a significant elastic anisotropy between axial and transverse directions (i.e., YsubT/sub YsubL/sub) for all systems. Interestingly, our results indicate a higher mechanostability of Aβsub42/sub fibrils compared to Aβsub40/sub, suggesting a significant correlation between mechanical stability and aggregation propensity (rate) in amyloid systems. That is, the higher the mechanical stability the faster the fibril formation. Finally, we find that α-synuclein fibrils are thermally less stable than β-amyloid fibrils. We anticipate that our molecular-level analysis of the mechanical response under different deformation conditions for the range of fibrils considered here will provide significant insights for the experimental observations.
机译:我们对与神经退行性疾病相关的几种相关生物原纤维(例如Aβ 40 ,Aβ 42 和α-突触核蛋白系统)进行分子动力学模拟,以获得对纳米力学的分子理解和解释。表征实验。该计算方法是通用的,并且解决了异质软材料的机械表征中的新分区问题。我们调查生物原纤维的弹性和热力学性质,以证实正在迅速发展并达到具有视频速率能力的动态成像的实验纳米力学表征技术。该计算方法定性地再现了生物原纤维的实验结果,从而验证了其在外推到宏观材料特性方面的应用。我们的计算技术可用于新实验的协同设计,这些新实验旨在从分子理解的角度揭示生物原纤维的纳米力学性能。我们的方法允许根据不同的变形(即拉伸(Y L ),剪切(S)和压痕(Y T )变形)对各种弹性特性进行比较。通过我们的分析,我们发现所有系统在轴向和横向之间都存在显着的弹性各向异性(即Y T L )。有趣的是,我们的结果表明Aβ 42 的原纤维比Aβ 40 的可机械化性更高,表明淀粉样蛋白系统的机械稳定性和聚集倾向(速率)之间存在显着相关性。即,机械稳定性越高,原纤维形成越快。最后,我们发现α-突触核蛋白原纤维的热稳定性低于β-淀粉样纤维。我们预计,对于此处考虑的原纤维范围,在不同变形条件下对机械响应的分子水平分析将为实验观察提供重要的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号