...
首页> 外文期刊>Biotechnology for Biofuels >Overcoming substrate limitations for improved production of ethylene in E. coli
【24h】

Overcoming substrate limitations for improved production of ethylene in E. coli

机译:克服底物限制以提高大肠杆菌中乙烯的产量

获取原文
           

摘要

Background Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts. In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Therefore, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging. Results We systematically explored the effects of media composition (rich versus defined), gene copy number, and the addition of exogenous substrates and other metabolites on the formation of ethylene in Escherichia coli expressing EFE. Guided by these results, we tested a number of genetic modifications predicted to improve substrate supply and ethylene production, including knockout of competing pathways and overexpression of key enzymes. Several such modifications led to higher AKG levels and higher ethylene productivity, with the best performing strain more than doubling ethylene productivity (from 81?±?3 to 188?±?13?nmol/OD600/mL). Conclusions Both EFE activity and substrate supply can be limiting factors in ethylene production. Targeted modifications in central carbon metabolism, such as overexpression of isocitrate dehydrogenase, and deletion of glutamate synthase or the transcription regulator ArgR, can effectively enhance substrate supply and ethylene productivity. These results not only provide insight into the intricate regulatory network of the TCA cycle, but also guide future pathway and genome-scale engineering efforts to further boost ethylene productivity.
机译:背景技术乙烯是用于生产多种塑料和化学品的重要工业化合物。目前,乙烯生产涉及化石基原料的蒸汽裂解,代表了化学工业中最高的CO 2 排放过程。乙烯的生物生产可以通过表达某些细菌和真菌中存在的一种蛋白质,即乙烯形成酶(EFE)来实现。只要可以显着提高生产率,它就有潜力提供可持续的蒸汽裂化替代品。一个关键的障碍是确定影响潜在微生物宿主中EFE反应底物可用性的因素。在O 2 存在下,EFE催化底物α-酮戊二酸(AKG)和精氨酸形成乙烯。复杂的调节系统可协调碳和氮的代谢,从而严格控制AKG,TCA循环的关键中间体和精氨酸的浓度。因此,可靠地预测哪些遗传变化将最终导致AKG和精氨酸利用率的提高具有挑战性。结果我们系统地研究了培养基组成(丰富与定义),基因拷贝数以及外源底物和其他代谢物的添加对表达EFE的大肠杆菌中乙烯形成的影响。在这些结果的指导下,我们测试了许多有望改善底物供应和乙烯产量的基因修饰,包括敲除竞争途径和关键酶的过度表达。几种这样的改性导致更高的AKG含量和更高的乙烯生产率,性能最佳的应变超过了乙烯生产率的两倍(从81?±?3到188?±?13?nmol / OD 600 / mL )。结论EFE活性和底物供应可能是乙烯生产的限制因素。中央碳代谢的目标修饰,例如异柠檬酸脱氢酶的过表达,以及谷氨酸合酶或转录调节剂ArgR的缺失,可以有效提高底物供应和乙烯生产率。这些结果不仅提供了对TCA循环的复杂调控网络的洞察力,而且还指导了未来的途径和基因组规模的工程工作,以进一步提高乙烯的生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号