首页> 外文期刊>Combustion and Flame >A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame
【24h】

A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame

机译:高Ka CH4 /空气预混合喷射火焰的火焰结构和稳定性的直接数值模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH4/air combustion with NOx based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I-0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. The stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O-2 double left right arrow O+OH (R35), is weak. Moreover, oxidation reactions, H-2+OH double left right arrow H+H2O (R79) and CO+OH double left right arrow CO2+H (R94), are influenced by H2O and CO2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. However, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH4+OH double left right arrow CH3+H2O (R93). (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在本工作中,分析了实验性高卡洛维兹数(Ka)CH4 /空气引燃预混火焰的直接数值模拟(DNS),以研究湍流火焰的内部结构和稳定机理。使用了基于GRI-Mech3.0的CH4 /空气与NOx混合燃烧的简化化学机理,包括268种基本反应和28种运输的物质。拉伸因子I-0的演变表明,近场中单位火焰表面积的燃烧速率显着降低,并且在x / D = 8时呈现最小值。在下游,燃烧速率逐渐提高。不同物种之间的拉伸因子不同,表明某些反应淬灭,而其他反应没有淬灭。湍流火焰和应变层流火焰之间的比较表明,如果考虑边界条件的变化并采用平均流的应变率,则平均火焰结构的某些方面可以用小火焰很好地表示。然而,由于湍流引起的火焰的加厚并未被捕获。在比以前的DNS高的Ka下研究位移速度的空间发展。与几乎所有以前的研究相比,以火焰锋为条件的平均位移速度在近场中为负,而对位移速度的主要贡献是正态扩散,而反应贡献是次要的。在更下游,反应超过了正常扩散,从而促进了正位移速度。近场中的负位移速度意味着火焰前沿位于引燃区域,在该区域内湍流火焰的内部结构受到显着影响,并且火焰与向内流动保持平衡。值得注意的是,在湍流火焰的上游区域,导致生成OH的主要反应是H + O-2双左向右箭头O + OH(R35)较弱。此外,氧化反应受到先导反应的H2O和CO2的影响,H-2 + OH左右双箭头H + H2O(R79)和CO + OH左右双箭头CO2 + H(R94)并被完全淬灭。因此,OH,H和O的整个自由基池受到影响。但是,燃油消耗层仍保持相当的活性并产生热量,主要是通过反应CH4 + OH双左向右箭头CH3 + H2O(R93)进行。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号