首页> 外文期刊>Combustion and Flame >The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O-2/CO2 flames and mechanisms of intense burning of oxy-flames
【24h】

The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O-2/CO2 flames and mechanisms of intense burning of oxy-flames

机译:CH4 /空气和CH4 / O-2 / CO2预混稳定涡流的湍流结构及强焰燃烧

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this work is to examine the structure of lean turbulent premixed CH4/air (air-flames) and CH4/O-2/CO2 (oxy-flames) in a swirl-stabilized combustor at the large (macro) and small (micro) scales, and to explain why the latter burns more intensely despite its lower laminar burning velocity. Measurements of the instantaneous flame front and flow field using OH-PLIF and PIV, respectively, are analyzed. The CO2 dilution in the oxy-flame was adjusted to achieve the same adiabatic temperature for both flames while keeping the equivalence ratio (=0.65) and Reynolds number (=20,000) the same. Results show that at the large scale, the overall length of the oxy-flame is notably shorter than that of the air-flame. We use a strained flame model with detailed kinetics to show that the strained consumption speed of oxy-flames is lower than that of air-flames, mainly due to the chemical role of CO2, and hence laminar flame properties cannot explain the difference between the two flames in the turbulent case. Instead, the turbulent dynamics properties such as the small scale wrinkling of the flame, its surface area density and radius of curvature are obtained from the data and used to explain the observed trends. Measurements show that the flame surface area density of oxy-flames is higher because more flame segments with smaller radius of curvature appear. This is particularly noticeable downstream, and is consistent with the Lewis number effects, i.e., the response for the flame to thermo-diffusive instability. The local average burning intensity, being high under oxy-combustion conditions, explain the shorter overall average flame length. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:这项工作的目的是在大(小)和大(小)的涡流稳定燃烧室中检查稀湍流的CH4 /空气(空气火焰)和CH4 / O-2 / CO2(氧火焰)的预混合结构。微米级),并解释了尽管层流燃烧速度较低,但后者为何燃烧得更剧烈的原因。分析了分别使用OH-PLIF和PIV进行的瞬时火焰前沿和流场测量。调整氧气火焰中的CO2稀释度,以使两个火焰达到相同的绝热温度,同时保持当量比(= 0.65)和雷诺数(= 20,000)相同。结果表明,从规模上看,火焰的总长度明显短于火焰的总长度。我们使用具有详细动力学的应变火焰模型显示,氧火焰的应变消耗速度低于空气火焰的消耗速度,这主要是由于CO2的化学作用,因此层流火焰特性无法解释两者之间的差异湍流中有火焰。取而代之的是,湍流动力学特性(例如火焰的小规模起皱),其表面积密度和曲率半径可从数据中获得,并用于解释观察到的趋势。测量表明,含氧火焰的火焰表面积密度较高,因为会出现更多的曲率半径较小的火焰段。这在下游特别显着,并且与路易斯数效应,即火焰对热扩散不稳定性的响应一致。局部平均燃烧强度在氧气燃烧条件下较高,这说明整体平均火焰长度较短。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2016年第12期|111-119|共9页
  • 作者单位

    MIT, Dept Mech Engn, Reacting Gas Dynam Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA|Tokyo Inst Technol, Sch Engn, Dept Mech Engn, Meguro Ku, NE-6,2-12-1 Ookayama, Tokyo 1528550, Japan;

    MIT, Dept Mech Engn, Reacting Gas Dynam Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    MIT, Dept Mech Engn, Reacting Gas Dynam Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    MIT, Dept Mech Engn, Reacting Gas Dynam Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    MIT, Dept Mech Engn, Reacting Gas Dynam Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Oxy-flames; Chemical kinetics; Flame surface density; Flame structure;

    机译:氧焰;化学动力学;火焰表面密度;火焰结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号