首页> 外文期刊>Combustion and Flame >A functional-group-based approach to modeling real-fuel combustion chemistry - Ⅰ: Prediction of stoichiometric parameters for lumped pyrolysis reactions
【24h】

A functional-group-based approach to modeling real-fuel combustion chemistry - Ⅰ: Prediction of stoichiometric parameters for lumped pyrolysis reactions

机译:基于基于功能的基于型燃料燃烧化学建模方法 - Ⅰ:块状热解反应的化学计量参数预测

获取原文
获取原文并翻译 | 示例
           

摘要

Real fuels are complex mixtures of hundreds of molecules, which makes it challenging to unravel their combustion chemistry. Several approaches in the literature have helped to clarify fuel combustion, including multi-component surrogates, lumped fuel chemistry modeling, and functional-group based methods. This work presents an innovative advancement to the lumped fuel chemistry modeling approach, using functional groups for mechanism development (FGMech). Stoichiometric parameters of lumped fuel decomposition reactions dictate the population of the key pyrolysis products, previously obtained by fitting experimental data of real-fuel pyrolysis. In this work, a functional group-based approach is proposed, which can account for real-fuel variability and predict stoichiometric parameters without experimentation. A database of the stoichiometric parameters and/or yields of key pyrolysis products was first constructed for approximately 50 neat fuels, based on previous pyrolysis data and a lumped kinetic model we developed. The effects of functional groups on the stoichiometric parameters and/or yields of key pyrolysis products were then identified and quantified. A quantitative structure-stoichiometry relationship was developed by multiple linear regression (MLR) model, which was used to predict the stoichiometric parameters and/or yields of key pyrolysis products based on ten input features (eight functional groups, molecular weight, and branching index). Products from the pyrolysis of surrogate mixtures and real-fuels were predicted using the MLR model and validated against experimental data in the literature. Comparison with the stoichiometric parameters from the HyChem experiment-based approach (Xu et al., 2018) showed that the predicted values in this work were in reasonable agreement (generally within a factor of two). When the stoichiometric parameters in the jet fuel (POSF 10325) HyChem kinetic model were replaced with this functional-group based prediction, only minor discrepancies were observed in the predictions of key pyrolysis products and global combustion parameters (such as ignition delay times and laminar flame speeds). Sensitivity analysis on stoichiometric parameters revealed their different roles in predicting speciation and global parameters. The functional group approach for predicting stoichiometric parameters in this work was the first step towards developing FGMech for modeling real-fuel combustion chemistry. Further development of the FGMech model & rsquo;s thermodynamic, kinetic, and transport data will be presented in a following study.(c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:真正的燃料是数百种分子的复杂混合物,这使得揭开其燃烧化学挑战。文献中的几种方法有助于阐明燃料燃烧,包括多组分替代品,集总燃料化学建模和基于功能组的方法。这项工作呈现了对集体燃料化学建模方法的创新进步,使用功能群体进行机理开发(FGMECH)。大块燃料分解反应的化学计量参数决定了通过拟合实际燃料热解的实验数据来决定了关键热解产品的群体。在这项工作中,提出了一种基于功能组的方法,可以考虑实际燃料变异性,并且在没有实验的情况下预测化学计量参数。首先基于先前的热解数据和我们开发的集体动力学模型,首先构建大约50个纯燃料的化学计量参数和/或产量的数据库。然后鉴定并定量官能团在化学计量参数和键热分解产物的产量和/或产率的影响。通过多元线性回归(MLR)模型开发了定量结构 - 化学计量关系,其用于基于十个输入特征(八个官能团,分子量和分支指数)来预测关键热解产物的化学计量和/或产量。 。使用MLR模型预测来自替代混合物的热解和实际燃料的产品,并针对文献中的实验数据验证。与赛赫姆实验的方法的化学计量参数(XU等人,2018)的比较表明,这项工作中的预测值是合理的一致性(一般在两者范围内)。当射流燃料(POSF 10325)速率的基于功能基团的预测取代了射流燃料(POSF 10325)速率的参数时,在关键热解产品和全球燃烧参数的预测中仅观察到轻微的差异(例如点火延迟时间和层流火焰速度)。化学计量参数的敏感性分析显示了预测物种和全局参数的不同作用。在这项工作中预测化学计量参数的功能组方法是开发FGMECH的第一步,用于建模真正的燃料燃烧化学。进一步发展FGMECH模型和RSQUO; S热力学,动力学和运输数据将在以下研究中提出。(c)2020燃烧研究所。由elsevier Inc.保留所有权利发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号