首页> 外文期刊>Bulletin of engineering geology and the environment >Interet de la mineralogie des granulats dans la connaissance des risques de l'alcali-reaction
【24h】

Interet de la mineralogie des granulats dans la connaissance des risques de l'alcali-reaction

机译:骨料矿物学对碱反应风险的了解

获取原文
获取原文并翻译 | 示例
       

摘要

Alkali aggregate reaction (AAR) is responsible for the degradation of a number of concrete structures. Its occurrence depends on the interstitial voids, the presence of soluble silica in the aggregate and the presence of water as a dissolving agent and medium for chemical exchange. AAR results from the dissolution of soluble silica (reactive silica) present in the aggregate, such as quartz and chalcedony, by highly alkaline interstitial fluids with a pH in the order of 13. The reaction leads to the formation of an expansive alkali silica gel. This creates a crack pattern in the concrete and, once started, the cracks propagate into other areas of the concrete mass, permitting further water percolation. To prevent such reaction, it is essential to limit the alkali content of the cement or ensure that the aggregate does not contain too much reactive silica. It is important, therefore, to understand the significance of the silica within a concrete aggregate and the nature of the more reactive silica, such as quartz, chalcedony and opal. In quartz, it is the OH-ions that cause the dissolution of silica. Where the quartz has been subjected to stress, the large crystals are more prone to fracturing. Chalcedony has a similar structure to quartz but being composed of many smaller crystals, water and other ions are able to penetrate the mineral more easily. Although opal was in the past considered to be amorphous, it is now known to be at least partially crystallised as low-temperature cristobalite and tridymite. Again, the high percentage of small particles facilitates water percolation and thus reaction to any dissolved silica. Indeed, AAR is known to occur with the presence of only 4% opal. Volcanic glass or the glassy fraction from hyalopohitic lavas are always alkali and silica rich. Hydrolysis of such silicates (e.g. feldspars) may free the silica and alkali ions which then recom-bine in formations susceptible to AAR. On the basis of the reactive silica content, aggregates are classified as: non-reactive (NR) - where the reactive silica content is insufficient to allow significant expansion in the concrete; potentially reactive (PR) - where there are a sufficient number of reactive particles in a sufficiently alkali-rich medium for expansion of the concrete to occur in the presence of water; and potentially reactive with a pessimum effect (PRP) - where an upper threshold value of flint, chalcedony or opal (the pessimum) is exceeded, expansion of the concrete does not occur. This process is not yet well understood and the aggregates in which it occurs represent a low proportion of the world's gravel deposits, although they may be of regional importance, e.g. the Thames valley in the UK, the Paris basin in France. In order to determine sensibility to AAR, the aggregate should be assessed both petrographically and mineralogically . Mortar or concrete bar tests can be used to measure the expansion, which should be below the threshold value for an NR classification. However, such tests may take several months and it may then not be possible to distinguish between NR and PRP. "Autoclave" and "microbar" tests give a more rapid result as the expansion of the mortar bar is greatly enhanced by the use of temperature and an alkali-rich brine, but the results may be excessively pessimistic. The chemical kinetic test directly measures the soluble silica content of the sample, but the interpretation of the results is sometimes difficult. The paper uses the case of the Garonne River basin to discuss the way in which a petrographic knowledge of the gravel deposits may assist in mapping the reactivity of the aggregates along the course of the river.
机译:碱骨料反应(AAR)导致许多混凝土结构的退化。它的出现取决于间隙空隙,聚集体中可溶性二氧化硅的存在以及作为溶解剂的水和化学交换介质的存在。 AAR是由于pH值在13左右的高碱性间隙液溶解了聚集体(例如石英和玉髓)中存在的可溶性二氧化硅(反应性二氧化硅)而引起的。该反应导致形成膨胀的碱性硅胶。这会在混凝土中产生裂缝图案,一旦开始,裂缝就会传播到混凝土块的其他区域,从而进一步渗水。为了防止这种反应,必须限制水泥的碱含量或确保骨料中不含有过多的反应性二氧化硅。因此,重要的是要了解混凝土骨料中二氧化硅的重要性以及反应性较高的二氧化硅(例如石英,玉髓和蛋白石)的性质。在石英中,是OH离子导致二氧化硅溶解。在石英受到应力的地方,大晶体更容易破裂。玉髓具有与石英相似的结构,但由许多较小的晶体组成,水和其他离子能够更容易地穿透矿物。尽管蛋白石在过去被认为是无定形的,但现在已知它至少部分结晶为低温方石英和鳞石英。再次,高百分比的小颗粒有利于水的渗透并因此促进与任何溶解的二氧化硅的反应。实际上,已知仅在4%的蛋白石存在下会发生AAR。火山玻璃或玻璃质熔岩的玻璃状部分始终富含碱和二氧化硅。此类硅酸盐(例如长石)的水解可释放出二氧化硅和碱金属离子,然后它们重新组合成对AAR敏感的地层。根据反应性二氧化硅的含量,骨料分类为:非反应性(NR)-反应性二氧化硅的含量不足以使混凝土显着膨胀;潜在反应性(PR)-在足够富碱的介质中有足够数量的反应性颗粒,可在水存在下使混凝土膨胀;并可能产生悲观效果(PRP)-超过火石,玉髓或蛋白石的最高阈值时,不会发生混凝土膨胀。这个过程还没有被很好地理解,尽管它可能在区域上很重要,例如在世界范围内,但它的聚集体在世界砾石沉积物中所占的比例很小。英国的泰晤士河谷,法国的巴黎盆地。为了确定对AAR的敏感性,应从岩相和矿物学角度评估骨料。可以使用砂浆或混凝土钢筋测试来测量膨胀,该膨胀应低于NR分类的阈值。但是,这样的测试可能要花费几个月的时间,因此可能无法区分NR和PRP。 “高压釜”和“微棒”测试给出了更快的结果,因为通过使用温度和富含碱的盐水大大提高了灰浆棒的膨胀,但是结果可能过于悲观。化学动力学测试直接测量样品中可溶性二氧化硅的含量,但有时很难解释结果。本文以加龙河流域为例,讨论了砾石沉积的岩石学知识可以帮助绘制沿河道的骨料反应性的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号