首页> 外文期刊>Biorheology >Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct
【24h】

Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct

机译:动态变形载荷可在组织工程化的分层软骨结构中选择性施加机械刺激

获取原文
获取原文并翻译 | 示例
       

摘要

The application of dynamic physiologic loading to a bilayered chondrocyte-seeded agarose construct with a 2% (wt/vol) top layer and 3% (wt/vol) bottom layer was hypothesized to (1) improve overall construct properties and (2) result in a tissue that mimics the mechanical inhomogeneity of native cartilage. Dynamic loading over the 28 day culture period was found to significantly increase bulk mechanical and biochemical properties versus free-swelling culture. The initial depth-distribution of the compressive Young's modulus (E_Y) reflected the intrinsic properties of the gel in each layer and a similar trend to the native tissue, with a softer 2% gel layer and a much stiffer 3% gel layer. After 28 days in culture, free-swelling conditions maintained this general trend while loaded constructs possessed a reverse profile, with significant increases in E_Y observed only in the 2% gel. Histological analysis revealed preferential matrix formation in the 2% agarose layer, with matrix localized more pericellularly in the 3% agarose layer. Finite element modeling revealed that, prior to significant matrix elaboration, the 2% layer experiences increased mechanical stimuli (fluid flow and compressive strain) during loading that may enhance chondrocyte stimulation and nutrient transport in that layer, consistent with experimental observations. From these results, we conclude that due to the limitations in 3% agarose, the use of this type of bilayered construct to construct depth-dependent inhomogeneity similar to the native tissue is not likely to be successful under long-term culture conditions. Our study underscores the importance of other physical properties of the scaffold that may have a greater influence on interconnected tissue formation than intrinsic scaffold stiffness.
机译:假设将动态生理负荷应用于双层软骨细胞播种的琼脂糖构建体中,该构建体的顶层为2%(wt / vol),底层为3%(wt / vol),以(1)改善总体构建体性能,并(2)结果在模仿天然软骨机械不均匀性的组织中与自由溶胀培养相比,发现在28天培养期内的动态负载显着提高了整体机械和生化特性。压缩杨氏模量(E_Y)的初始深度分布反映了每一层凝胶的固有特性,并具有与天然组织相似的趋势,具有较软的2%凝胶层和较硬的3%凝胶层。培养28天后,自由膨胀条件保持了这种总体趋势,而负载的构建物具有相反的特征,仅在2%的凝胶中观察到E_Y的显着增加。组织学分析显示在2%琼脂糖层中优先形成基质,而基质在3%琼脂糖层中更多位于细胞周围。有限元建模显示,在进行重大基质加工之前,2%的层在加载过程中会经历机械刺激(流体流动和压缩应变)增加的情况,这可能会增强该层中的软骨细胞刺激和营养运输,这与实验观察一致。根据这些结果,我们得出结论,由于3%琼脂糖的局限性,在长期培养条件下,使用这种类型的双层构建体来构建与天然组织相似的深度依赖性非均质性不太可能成功。我们的研究强调了支架的其他物理特性的重要性,这些特性可能比内部支架的刚度对互连组织的形成有更大的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号