...
首页> 外文期刊>Atmospheric environment >Impact of the Knudsen number and mass-transfer expression on multi-phase kinetic modeling
【24h】

Impact of the Knudsen number and mass-transfer expression on multi-phase kinetic modeling

机译:克努森数和传质表达对多相动力学建模的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Three different mass-transfer expressions are employed within the Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC) to study gas-phase molecular chlorine and bromine production from NaCl and NaBr aerosols, respectively. Simulations of chamber experiments are performed in which NaCl aerosols react with gas-phase ozone in the presence of UV light, in order to identify the importance of the Knudsen number and mass-transfer expression in systems with varying contributions from gas-phase, aqueous-phase, and interfacial chemistry. In the case of NaBr aerosols, simulations are performed of both dark and photolytic conditions. A range of Knudsen numbers spanning the continuum, transition and free-molecular regimes is studied. Particle size is varied over three orders of magnitude, and particle concentration is changed to keep either (a) total aerosol volume or (b) total aerosol surface area constant. When total aerosol volume is constant, the total amount of surface area available for interfacial reaction increases linearly with Knudsen number. Consequently peak gas-phase Cl_2 and Br_2 concentrations increase by two orders of magnitude from the continuum regime to the free-molecular regime. When total aerosol surface area is constant, total aerosol volume is inversely proportional to Knudsen number, with lesser volume being available at higher Knudsen numbers. Consequently Cl~- depletion in the kinetic regime leads to most gas-phase Cl_2 being produced in the transition regime. Gas-phase Br_2 concentration trends are determined by aqueous-phase reaction mechanisms, leading to a monotonic decrease in production with Knudsen number. At all Knudsen numbers, more gas-phase bromine is produced in the photolytic case than in the dark case, the difference being significant in the transition regime. Results of this study suggest that halogen production is insensitive to the mass-transfer expression used in the simulations.
机译:在气溶胶,气体和界面化学模型(MAGIC)中采用了三种不同的传质表达式,分别研究了NaCl和NaBr气溶胶生产的气相分子氯和溴。进行室内实验模拟,其中NaCl气溶胶在紫外光的存在下与气相臭氧反应,以便确定在气相,水相和水蒸气对系统的贡献各不相同的系统中,克努森数和传质表达的重要性。相和界面化学。对于NaBr气雾剂,在黑暗和光解条件下均进行了模拟。研究了一系列跨越连续,过渡和自由分子体系的克努森数。颗粒大小在三个数量级上变化,并且改变颗粒浓度以保持(a)总气溶胶体积或(b)总气溶胶表面积恒定。当总气溶胶体积恒定时,可用于界面反应的总表面积随Knudsen数线性增加。因此,从连续态到自由分子态,气相中的Cl_2和Br_2峰值浓度增加了两个数量级。当总的气溶胶表面积恒定时,总的气溶胶体积与克努森数成反比,而在较高的克努森数下体积较小。因此,动力学方案中Cl-的消耗导致在过渡方案中产生大多数气相Cl_2。气相Br_2浓度趋势由水相反应机理确定,导致产量随克努森数单调下降。在所有Knudsen数下,在光解情况下产生的气相溴比在暗情况下产生的气相溴多,在过渡过程中差异很大。这项研究的结果表明,卤素的产生对模拟中使用的传质表达不敏感。

著录项

  • 来源
    《Atmospheric environment》 |2010年第2期|153-163|共11页
  • 作者单位

    University of California, Irvine, Department of Chemistry, Irvine, CA 92697-2025, USA University of California, Irvine, Department of Mechanical and Aerospace Engineering, Irvine, CA 92697-3975, USA;

    University of California, Irvine, Department of Mechanical and Aerospace Engineering, Irvine, CA 92697-3975, USA;

    University of California, Irvine, Department of Mechanical and Aerospace Engineering, Irvine, CA 92697-3975, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    knudsen number; mass-transfer coefficient; interfacial reaction; multi-phase kinetics;

    机译:努森数传质系数界面反应多相动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号