首页> 外文期刊>ASHRAE Transactions >A CFD Study to Identify Methods to Increase Maximum Velocity of Makeup Air for Atrium Smoke Control
【24h】

A CFD Study to Identify Methods to Increase Maximum Velocity of Makeup Air for Atrium Smoke Control

机译:CFD研究确定增加中风烟气补充空气最大速度的方法

获取原文
获取原文并翻译 | 示例
           

摘要

The primary purpose of this study is to develop engineering methods to assess the impact of increased makeup air velocity in atria. The current restriction defined by NFPA 92 (NFPA 2015) states: "The makeup air velocity shall not exceed 200ft/min (1.02 m/sec) where the makeup air could come into contact with the plume unless a higher makeup air velocity is supported by engineering analysis. " This limitation not only limits creative and aesthetic atria designs but may also represent a significant cost. This study analyzes the effect of makeup air injected by a variety of vent sizes at elevations at or below the limiting elevation of the flame through numerical simulations. This study focuses on identifying worst-case scenarios for the interaction of makeup air with an axisymmetric plume by applying computer modeling to simulate multiple configurations, observe the results, and adapt further simulations to elicit the most extreme cases. A mass flow rate diagnostic is used to assess the increase in entrainment (i.e., smoke production.) This mass flow diagnostic is developed to provide a comparative analysis, assessing the increase in the rate of smoke production with a specified makeup air velocity with that produced with no mechanical makeup air. The proportional increase in entrainment is defined as an alpha factor. The most significant smoke production increase and smoke layer stabilization descent is associated with a 1MW(950 Btu/s)fire, with lesser increases observed for 2.5 and 5 MW (2370 and 4740 Btu/s) fires. As the makeup air is introduced further from the edge of the flame, the apparent effect of the airflow velocity is reduced.
机译:这项研究的主要目的是开发工程方法,以评估心房中补充气流速度的影响。 NFPA 92(NFPA 2015)定义的当前限制规定:“补充空气速度不得超过200ft / min(1.02 m / sec),除非补充空气流速更高,否则补充空气可能会与羽流接触。工程分析:“这种限制不仅限制了创意和美学的心房设计,而且还可能带来可观的成本。这项研究通过数值模拟分析了各种排气口注入的补充空气在火焰极限高度以下或以下的影响。这项研究的重点是通过应用计算机建模来模拟多种配置,观察结果,并采用进一步的模拟来引发最极端的情况,从而确定补充空气与轴对称羽流相互作用的最坏情况。使用质量流率诊断程序评估夹带(例如,烟雾产生)的增加。开发此质量流诊断程序以提供比较分析,以指定的补充空气速度评估产生的烟气速率与产生的空气流速的增加量没有机械化妆的空气。夹带的比例增加被定义为α因子。最显着的烟雾产量增加和烟雾层稳定下降与1MW(950 Btu / s)火灾相关,而2.5和5 MW(2370和4740 Btu / s)火灾观察到的增幅较小。当补充空气从火焰边缘进一步引入时,气流速度的表观效果会降低。

著录项

  • 来源
    《ASHRAE Transactions》 |2016年第2期|10-20|共11页
  • 作者单位

    University of Maryland, College Park, MD;

    Department of Fire Protection Engineering, University of Maryland, College Park, MD;

    Department of Fire Protection Engineering, University of Maryland, College Park, MD;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号