...
首页> 外文期刊>Applied Surface Science >Engineering of the band gap induced by Ce surface enrichment in Ce-doped SnO_2 nanocrystals
【24h】

Engineering of the band gap induced by Ce surface enrichment in Ce-doped SnO_2 nanocrystals

机译:Ce富含Ce掺杂SnO_2纳米晶体的Ce表面富集引起的带隙的工程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Surface modification of oxide semiconductors nanocrystals can promote news effects mainly in nanocrystals up to 10 nm in diameter. In these systems, the ratio surface/core is increased, and the quantum effect can not rule out. A form of tuning the crystallite size is by doping process. Our results showed a monotonic nanoparticle size decrease from similar to 10 to similar to 3 nm accompanied by the progressive Ce-enriched surface, with the volume of the unit cell increases as the Ce content is increased, evidencing solid-solution formation between the Sn and Ce ions in the rutile-type structure. The Fourier Transform Infrared spectroscopy measurements show a redshift of the Sn-O stretching vibration peak, which is in good agreement with the solid solution of Ce and Sn ions. The dopant enrichment of the nanocrystal surface, as evidenced by Raman spectroscopy is associated with a monotonic decrease of the PL intensity. The latter is induced by a progressive decreasing of the relative dielectric constant between the core and shell regions, which in turn is related to the narrowing of the optical band gap energy with increasing of Ce content. We attribute this effect to the enhancement of the surface polarization contribution that overtakes the confinement effect contribution.
机译:氧化物半导体纳米晶体的表面改性可以促进主要在直径为10nm的纳米晶体中的新闻效果。在这些系统中,比率表面/核心增加,并且量子效果不能排除。一种调整微晶尺寸的形式是掺杂过程。我们的结果表明,单调纳米粒子尺寸从类似于10〜类似于3nm的伴随的伴随的Ce富集表面,随着CE含量的增加,单调细胞的体积增加,SN和SN之间的固溶体形成金红石型结构中的CE离子。傅里叶变换红外光谱测量显示SN-O拉伸振动峰的红移,与Ce和Sn离子的固溶体良好。如拉曼光谱证明的纳米晶体表面的掺杂剂富集与PL强度的单调减少相关。后者通过芯和壳区域之间的相对介电常数的逐步降低而引起,这又与随着CE含量的增加而缩小光带隙能量。我们将此效果归因于提高表面极化贡献的增强,其超越了限制效果贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号